File size: 1,761 Bytes
aed4c3c b674921 aed4c3c b674921 aed4c3c b674921 aed4c3c b674921 aed4c3c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: medlid-identify
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# medlid-identify
This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co/bert-large-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1708
- Precision: 0.3912
- Recall: 0.4603
- F1: 0.4229
- Accuracy: 0.9463
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 81
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 381 | 0.1567 | 0.2689 | 0.3180 | 0.2914 | 0.9377 |
| 0.1618 | 2.0 | 762 | 0.1399 | 0.4016 | 0.3847 | 0.3930 | 0.9492 |
| 0.0978 | 3.0 | 1143 | 0.1505 | 0.3773 | 0.4239 | 0.3993 | 0.9468 |
| 0.0636 | 4.0 | 1524 | 0.1708 | 0.3912 | 0.4603 | 0.4229 | 0.9463 |
### Framework versions
- Transformers 4.30.2
- Pytorch 1.11.0
- Datasets 2.13.1
- Tokenizers 0.13.3
|