metadata
language:
- en
- ko
license: cc-by-nc-4.0
datasets:
- kyujinpy/KOR-gugugu-platypus-set
base_model:
- LDCC/LDCC-SOLAR-10.7B
pipeline_tag: text-generation
LDCC-SOLAR-gugutypus-10.7B
Model Details
Model Developers
- DongGeon Lee (oneonlee)
Model Architecture
- LDCC-SOLAR-gugutypus-10.7B is a instruction fine-tuned auto-regressive language model, based on the SOLAR transformer architecture.
Base Model
Training Dataset
Model comparisons
- Ko-LLM leaderboard (2024/03/01) [link]
Model | Average | Ko-ARC | Ko-HellaSwag | Ko-MMLU | Ko-TruthfulQA | Ko-CommonGen V2 |
---|---|---|---|---|---|---|
oneonlee/KoSOLAR-v0.2-gugutypus-10.7B | 51.17 | 47.78 | 58.29 | 47.27 | 48.31 | 54.19 |
oneonlee/LDCC-SOLAR-gugutypus-10.7B | 49.45 | 45.9 | 55.46 | 47.96 | 48.93 | 49 |
- (KOR) AI-Harness evaluation [link]
Tasks | Version | Filter | n-shot | Metric | Value | Stderr | |
---|---|---|---|---|---|---|---|
KMMLU | N/A | none | 0 | acc | 0.3329 | ± | 0.0794 |
KMMLU | N/A | none | 5 | acc | 0.3969 | ± | 0.0816 |
KoBEST-HellaSwag | 0 | none | 0 | acc | 0.4260 | ± | 0.0221 |
KoBEST-HellaSwag | 0 | none | 5 | acc | 0.4260 | ± | 0.0221 |
KoBEST-BoolQ | 0 | none | 0 | acc | 0.7792 | ± | 0.0111 |
KoBEST-BoolQ | 0 | none | 5 | acc | 0.8925 | ± | 0.0083 |
KoBEST-COPA | 0 | none | 0 | acc | 0.6670 | ± | 0.0149 |
KoBEST-COPA | 0 | none | 5 | acc | 0.7070 | ± | 0.0144 |
KoBEST-SentiNeg | 0 | none | 0 | acc | 0.7582 | ± | 0.0215 |
KoBEST-SentiNeg | 0 | none | 5 | acc | 0.9219 | ± | 0.0135 |
- (ENG) AI-Harness evaluation [link]
Tasks | Version | Filter | n-shot | Metric | Value | Stderr | |
---|---|---|---|---|---|---|---|
MMLU | N/A | none | 0 | acc | 0.5826 | ± | 0.1432 |
MMLU | N/A | none | 5 | acc | 0.6124 | ± | 0.1275 |
HellaSwag | 1 | none | 0 | acc | 0.6075 | ± | 0.0049 |
HellaSwag | 1 | none | 5 | acc | 0.6534 | ± | 0.0047 |
BoolQ | 2 | none | 0 | acc | 0.8737 | ± | 0.0058 |
BoolQ | 2 | none | 5 | acc | 0.8878 | ± | 0.0055 |
COPA | 1 | none | 0 | acc | 0.8300 | ± | 0.0378 |
COPA | 1 | none | 5 | acc | 0.9300 | ± | 0.0256 |
truthfulqa | N/A | none | 0 | acc | 0.4249 | ± | 0.0023 |
truthfulqa | N/A | none | 5 | acc | - | ± | - |
Implementation Code
### LDCC-SOLAR-gugutypus
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
repo = "oneonlee/LDCC-SOLAR-gugutypus-10.7B"
model = AutoModelForCausalLM.from_pretrained(
repo,
return_dict=True,
torch_dtype=torch.float16,
device_map='auto'
)
tokenizer = AutoTokenizer.from_pretrained(repo)