hushell's picture
End of training
306d696 verified
|
raw
history blame
3.31 kB
---
base_model: ondevicellm/tinyllama_moe_v2
tags:
- alignment-handbook
- trl
- sft
- generated_from_trainer
- trl
- sft
- generated_from_trainer
datasets:
- HuggingFaceH4/ultrachat_200k
model-index:
- name: tinyllama_moe_sft_routeraux_ep3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# tinyllama_moe_sft_routeraux_ep3
This model is a fine-tuned version of [ondevicellm/tinyllama_moe_v2](https://huggingface.co/ondevicellm/tinyllama_moe_v2) on the HuggingFaceH4/ultrachat_200k dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2954
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 128
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 120
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.72 | 0.09 | 100 | 1.6775 |
| 1.4985 | 0.18 | 200 | 1.4900 |
| 1.4482 | 0.26 | 300 | 1.4473 |
| 1.4152 | 0.35 | 400 | 1.4215 |
| 1.3777 | 0.44 | 500 | 1.4031 |
| 1.3932 | 0.53 | 600 | 1.3886 |
| 1.375 | 0.61 | 700 | 1.3762 |
| 1.3574 | 0.7 | 800 | 1.3657 |
| 1.349 | 0.79 | 900 | 1.3563 |
| 1.3276 | 0.88 | 1000 | 1.3481 |
| 1.3491 | 0.96 | 1100 | 1.3409 |
| 1.2812 | 1.05 | 1200 | 1.3358 |
| 1.2831 | 1.14 | 1300 | 1.3308 |
| 1.2917 | 1.23 | 1400 | 1.3258 |
| 1.2812 | 1.31 | 1500 | 1.3219 |
| 1.2819 | 1.4 | 1600 | 1.3178 |
| 1.2756 | 1.49 | 1700 | 1.3145 |
| 1.2584 | 1.58 | 1800 | 1.3107 |
| 1.2806 | 1.66 | 1900 | 1.3083 |
| 1.2815 | 1.75 | 2000 | 1.3054 |
| 1.2676 | 1.84 | 2100 | 1.3031 |
| 1.2388 | 1.93 | 2200 | 1.3011 |
| 1.2385 | 2.01 | 2300 | 1.3015 |
| 1.2459 | 2.1 | 2400 | 1.3000 |
| 1.2349 | 2.19 | 2500 | 1.2989 |
| 1.2277 | 2.28 | 2600 | 1.2981 |
| 1.2243 | 2.37 | 2700 | 1.2973 |
| 1.2298 | 2.45 | 2800 | 1.2967 |
| 1.2362 | 2.54 | 2900 | 1.2961 |
| 1.216 | 2.63 | 3000 | 1.2958 |
| 1.2381 | 2.72 | 3100 | 1.2957 |
| 1.2274 | 2.8 | 3200 | 1.2955 |
| 1.2235 | 2.89 | 3300 | 1.2954 |
| 1.2438 | 2.98 | 3400 | 1.2954 |
### Framework versions
- Transformers 4.37.0
- Pytorch 2.1.2+cu118
- Datasets 2.16.1
- Tokenizers 0.15.0