omarhkh's picture
Update README.md
0c33dda
|
raw
history blame
2.57 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: resnet-50-finetuned-omar
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9143576826196473

resnet-50-finetuned-omar

This model is a fine-tuned version of microsoft/resnet-50 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2645
  • Accuracy: 0.9144

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.0695 1.0 111 1.0576 0.5315
0.971 2.0 223 0.9366 0.5416
0.8121 3.0 334 0.7493 0.7103
0.6861 4.0 446 0.5625 0.8363
0.606 5.0 557 0.4239 0.8816
0.5001 6.0 669 0.3159 0.9219
0.4704 7.0 780 0.3254 0.9118
0.4332 8.0 892 0.2808 0.9194
0.4432 9.0 1003 0.2854 0.9219
0.4768 10.0 1115 0.2782 0.9219
0.4432 11.0 1226 0.2768 0.9320
0.4752 12.0 1338 0.2744 0.9219
0.489 13.0 1449 0.2693 0.9194
0.3743 14.0 1561 0.2715 0.9270
0.417 14.93 1665 0.2645 0.9144

Framework versions

  • Transformers 4.30.2
  • Pytorch 2.0.1+cu117
  • Datasets 2.13.0
  • Tokenizers 0.13.3