File size: 13,713 Bytes
98e3d5f |
1 |
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x78bb5df9f6d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x78bb5df9f760>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x78bb5df9f7f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x78bb5df9f880>", "_build": "<function ActorCriticPolicy._build at 0x78bb5df9f910>", "forward": "<function ActorCriticPolicy.forward at 0x78bb5df9f9a0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x78bb5df9fa30>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x78bb5df9fac0>", "_predict": "<function ActorCriticPolicy._predict at 0x78bb5df9fb50>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x78bb5df9fbe0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x78bb5df9fc70>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x78bb5df9fd00>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x78bb5df50680>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1507328, "_total_timesteps": 1500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1727718202313332487, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJpP8Txxq1u7Fg3ZO17rxjtMr3O8Qiu4PAAAgD8AAIA/YGRXvur7Hj+L6O8+dteNvj3l3z3r3pM+AAAAAAAAAACA+Wm9bnfDPpHunL7TUNO+SeqsvrwZtzsAAAAAAAAAAM0t1rzirb4+uObSPW5Nhb5kotw9rvemuwAAAAAAAAAADZ1LvkW2DT+5+Jg+W92BvgZemr1JdJE+AAAAAAAAAADN6Tu9comkPgp6Ijw9Ypa+t8jSPAIQUb4AAAAAAAAAAADyOb0oB4U+sl70PLrUoL6lT7m93oQEPQAAAAAAAAAA5sEFvWxNmT5XzoI7NU2kviaD07n13zc9AAAAAAAAAAAz8XI8QI+uPj3neTt7PLe+VR8lvEszjz0AAAAAAAAAAJqZNbn2fES6iwD1tvo+2bH/bSK6kxoSNgAAgD8AAIA/5lwHPYJ9mj+NhuQ9HtO9vkINwT1Woo49AAAAAAAAAAAAgPO6XOtuujX+RbNflhAw9guFur5+yjMAAIA/AACAPzMDhryu7cK6Z5atu5OKLzyHrFG7PVMdPQAAgD8AAIA/ZobDu2yhjT+Gxqe9zuHJviTKkDsAAHu9AAAAAAAAAAAz89+6BR7Ru1PQg7vn2KU8bcsnPZQPi70AAIA/AACAP40OGT7Wt5A/IhWcPlb5wL4S26Q+8NhZPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004885333333333408, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVCgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG7mfiPyTZCMAWyUS/SMAXSUR0CbSg2aUiY+dX2UKGgGR0Bzd7RhMJyAaAdL8GgIR0CbSosJIDoydX2UKGgGR0BxGZmukk8iaAdL7mgIR0CbSxe4kNWmdX2UKGgGR0BwlrpbD/EPaAdL8GgIR0CbS3dMCcPOdX2UKGgGR0BxeHCwbEP2aAdNIAFoCEdAm0u0K/mDDnV9lChoBkdAbyn0K7ZnMGgHTQgBaAhHQJtLvgWJrL11fZQoaAZHQHKGp7LMcIZoB00NAWgIR0CbTFPO6d1/dX2UKGgGR0BwVxupCKJmaAdNBgFoCEdAm0yHVLBbfXV9lChoBkdAcScjk+5e7mgHTREBaAhHQJtMz8uSOip1fZQoaAZHQHFF0ihWYF9oB0v1aAhHQJtNMbHZK4B1fZQoaAZHQHBNBRhttQ9oB0vyaAhHQJtNX5/LDAJ1fZQoaAZHQFL1+u/1xsFoB0uiaAhHQJtNby6MBIZ1fZQoaAZHQHHGob0e2eBoB0vsaAhHQJtOVbkfcN91fZQoaAZHQHIlcFdLQHBoB00CAWgIR0CbTlH7xd6cdX2UKGgGR0BzCZdGAkLQaAdNWAFoCEdAm093Kr7wa3V9lChoBkdAcSLQ2uPmxWgHTQcBaAhHQJtQo68xsVN1fZQoaAZHQG/jqTbFjutoB0v4aAhHQJtQyGUOd5J1fZQoaAZHQHFOaRZEDyRoB00aAWgIR0CbURzHS4OMdX2UKGgGR0BwTfJV81GcaAdL+GgIR0CbUa4VARkFdX2UKGgGR0ByNCHrQgLaaAdL+2gIR0CbUgzQeFL4dX2UKGgGR0BvA98b70nPaAdNFAFoCEdAm1IY1k1/D3V9lChoBkdAcJ5ySV4X42gHTREBaAhHQJtSkZ4wAVB1fZQoaAZHQHACnDNyHVRoB0v7aAhHQJtSpvwVj7R1fZQoaAZHQHIa7RnezldoB00VAWgIR0CbU2m8ujASdX2UKGgGR0BxrG6H0se5aAdL8WgIR0CbU3ujASFodX2UKGgGR0BzNcBsANobaAdNAgFoCEdAm1OkeQuEmXV9lChoBkdAcNuPWQOnVGgHS/1oCEdAm1O1AAyVOnV9lChoBkdAb8gN4JNTLmgHTSUBaAhHQJtUDhqCYkV1fZQoaAZHQHEmqEOAiFFoB00PAWgIR0CbVSJQ+EAYdX2UKGgGR0BweMaKk2xZaAdL7GgIR0CbVW20AtFsdX2UKGgGR0BwxS/1xsEaaAdNJAFoCEdAm1Wd6w+t83V9lChoBkdAcmsS4e9zwWgHS9toCEdAm1YG0zCUHXV9lChoBkdAcpkIIWxhUmgHS+NoCEdAm1ZSSJTESHV9lChoBkdAcX7jYI0IkmgHS/5oCEdAm2wij1wo9nV9lChoBkdAUbBZLZi/f2gHS7poCEdAm2xH8jzI3nV9lChoBkdAcC8bobGWEGgHS/toCEdAm2yEfT1CgXV9lChoBkdAUmzc8DB/JGgHS6toCEdAm2ydFz+3pnV9lChoBkdAciDCaZx7zGgHTS0BaAhHQJts7YdyT6l1fZQoaAZHQHA3plJ6IFhoB00dAWgIR0CbbXUahpQDdX2UKGgGR0BwbHZM+NcXaAdNFgFoCEdAm23aN6w+uHV9lChoBkdAcay47ihnJ2gHS+ZoCEdAm23eMuOCG3V9lChoBkdAcU19Sde6Z2gHTRQBaAhHQJtt5rHlwLp1fZQoaAZHQHNOj4tYjjdoB0vzaAhHQJtt5edCmdl1fZQoaAZHQHEuufdyksVoB00KAWgIR0CbbpVlwtJ4dX2UKGgGR0BvBpE0BOpLaAdL7WgIR0Cbb2H2AXl9dX2UKGgGR0BxXNSDRMN+aAdL+GgIR0Cbb/hYeT3ZdX2UKGgGR0ByHFigCfYjaAdL52gIR0CbcC3qzJIUdX2UKGgGR0Bxlt29tdiVaAdL4GgIR0CbcFAeJYT1dX2UKGgGR0Bx7QAiml67aAdNMAFoCEdAm3FwJswcpHV9lChoBkdAcpfOH31zyWgHS+poCEdAm3IDz3AVPHV9lChoBkdActa2cJ+lTGgHS+ZoCEdAm3IKaG5+Y3V9lChoBkdAcUOk8Rtgr2gHS/VoCEdAm3KelTFVDXV9lChoBkdAbtcIomXw9mgHS+doCEdAm3OEALiMpHV9lChoBkdAcm7zmwJPZmgHS/VoCEdAm3PuEh7mdXV9lChoBkdAcftqc3EQ5GgHTQUBaAhHQJt0brVvuPV1fZQoaAZHQHGbP2K2rn1oB00zAWgIR0CbdH4MnZ00dX2UKGgGR0Bw1uqhlDneaAdNFwFoCEdAm3SG8yvcJ3V9lChoBkdAcESziS7oS2gHTRUBaAhHQJt01EZzgdh1fZQoaAZHQHNJ+EAYHgRoB005AWgIR0CbdOcm0E5idX2UKGgGR0Bx+VXlr/KhaAdL6WgIR0CbdVYsd1dPdX2UKGgGR0BwqCfL9uP4aAdNEQFoCEdAm3V3LidauHV9lChoBkdAcCJor4Fia2gHS/9oCEdAm3ZXAAQxvnV9lChoBkdAcsrdvbXYlWgHTQEBaAhHQJt2uVpsXSB1fZQoaAZHQHF38VLzwttoB00NAWgIR0Cbdt4PwuuidX2UKGgGR0BzX0Fiay8jaAdL3WgIR0CbdwpJPIn0dX2UKGgGR0Bu2xnOB19waAdL+GgIR0CbeDebutwKdX2UKGgGR0Bwhhalk6LgaAdNBAFoCEdAm3iDUiILxHV9lChoBkdAb8Q1CPZIx2gHTQYBaAhHQJt5KvfTCtR1fZQoaAZHQHNdYuK4x1xoB0vnaAhHQJt5jrv9cbB1fZQoaAZHQHDheN96TntoB0vpaAhHQJt6FXU6PsB1fZQoaAZHQHGFcY64lQdoB00KAWgIR0CbeiAi3XqadX2UKGgGR0ByN0Vgx8D0aAdL9GgIR0CbemV8kUsWdX2UKGgGR0Bu/FRaX8fnaAdNAAFoCEdAm3q8TN+so3V9lChoBkdAcgISVnmJWWgHTQ8BaAhHQJt7bLzPKMh1fZQoaAZHQHI0ufukUK1oB0v0aAhHQJt7dJCjUNN1fZQoaAZHQG0ghGx2SuBoB0v/aAhHQJt7lFUhmoR1fZQoaAZHQHMqzVlPJq9oB00UAWgIR0Cbe5vzvqkedX2UKGgGR0Bx3cWM0gr6aAdL2mgIR0Cbe7/oJRfndX2UKGgGR0BzUD/CIk7faAdL5mgIR0CbfG3bVSXMdX2UKGgGR0BydqCZnctYaAdL7mgIR0CbfHnm7rcCdX2UKGgGR0Byj11eSjgyaAdL6WgIR0CbfKLa24NJdX2UKGgGR0BT951zQu27aAdLlGgIR0CbfVyDIzWPdX2UKGgGR0BzDNkVeruIaAdL7WgIR0CbfiKqGUOedX2UKGgGR0BxMVvsJIDpaAdNCgFoCEdAm36VEZzgdnV9lChoBkdAcG64uscQy2gHS+9oCEdAm382WD6Fd3V9lChoBkdAV0JokAxSHmgHS5poCEdAm39J9uxbCHV9lChoBkdAcTGCDmKZUmgHS+poCEdAm3+gUUO/cnV9lChoBkdAcXjbp/wy7GgHS+poCEdAm3/s3Q2MsHV9lChoBkdAcCZv4M4LkWgHTR0BaAhHQJuABr/Khct1fZQoaAZHQHJ365f+judoB0vxaAhHQJuBHBciW3V1fZQoaAZHQG+KTxPO6d1oB00WAWgIR0CbgVgydnTRdX2UKGgGR0Bxk7GVAzHkaAdL+2gIR0CbgWXLNfPYdX2UKGgGR0Bwvodfb9IgaAdL/WgIR0CbgZvStvGZdX2UKGgGR0Bw6jovBacJaAdL42gIR0CbggqYJE6UdX2UKGgGR0BziELBsQ/YaAdL7mgIR0CbgkXNC7btdX2UKGgGR0BxUZsP8Q7LaAdNHwFoCEdAm4JoDoyKvXV9lChoBkdAc9TTXrdFfGgHS+FoCEdAm4LyApazNXV9lChoBkdAcfXLkjopx2gHTSgBaAhHQJuD1PTG5tp1fZQoaAZHQHF4qhxo7FNoB0vlaAhHQJuENfE4vOB1fZQoaAZHQHKCEd3jdYZoB00AAWgIR0CbhHHmig01dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 368, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.4.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |