metadata
license: bsd-3-clause
base_model: Salesforce/codegen-350M-mono
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: codegen-350M-mono-measurement_pred-diamonds-seed3
results: []
codegen-350M-mono-measurement_pred-diamonds-seed3
This model is a fine-tuned version of Salesforce/codegen-350M-mono on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.4321
- Accuracy: 0.9160
- Accuracy Sensor 0: 0.9279
- Auroc Sensor 0: 0.9601
- Accuracy Sensor 1: 0.9017
- Auroc Sensor 1: 0.9575
- Accuracy Sensor 2: 0.9458
- Auroc Sensor 2: 0.9593
- Accuracy Aggregated: 0.8887
- Auroc Aggregated: 0.9488
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 64
- num_epochs: 5
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Accuracy Sensor 0 | Auroc Sensor 0 | Accuracy Sensor 1 | Auroc Sensor 1 | Accuracy Sensor 2 | Auroc Sensor 2 | Accuracy Aggregated | Auroc Aggregated |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0.281 | 0.9997 | 781 | 0.4126 | 0.8254 | 0.8474 | 0.9025 | 0.8423 | 0.9144 | 0.8339 | 0.9166 | 0.7778 | 0.8949 |
0.1966 | 1.9994 | 1562 | 0.2290 | 0.9123 | 0.9079 | 0.9312 | 0.9138 | 0.9490 | 0.9288 | 0.9424 | 0.8990 | 0.9313 |
0.1412 | 2.9990 | 2343 | 0.2619 | 0.9043 | 0.9059 | 0.9537 | 0.8838 | 0.9581 | 0.9410 | 0.9551 | 0.8863 | 0.9464 |
0.0757 | 4.0 | 3125 | 0.2862 | 0.9224 | 0.9307 | 0.9622 | 0.9153 | 0.9626 | 0.9464 | 0.9601 | 0.8971 | 0.9516 |
0.0356 | 4.9984 | 3905 | 0.4321 | 0.9160 | 0.9279 | 0.9601 | 0.9017 | 0.9575 | 0.9458 | 0.9593 | 0.8887 | 0.9488 |
Framework versions
- Transformers 4.41.0
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1