--- license: bsd-3-clause base_model: Salesforce/codegen-350M-mono tags: - generated_from_trainer metrics: - accuracy model-index: - name: codegen-350M-mono-measurement_pred-diamonds-seed3 results: [] --- # codegen-350M-mono-measurement_pred-diamonds-seed3 This model is a fine-tuned version of [Salesforce/codegen-350M-mono](https://huggingface.co/Salesforce/codegen-350M-mono) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3757 - Accuracy: 0.9134 - Accuracy Sensor 0: 0.9235 - Auroc Sensor 0: 0.9559 - Accuracy Sensor 1: 0.8989 - Auroc Sensor 1: 0.9539 - Accuracy Sensor 2: 0.9486 - Auroc Sensor 2: 0.9653 - Accuracy Aggregated: 0.8826 - Auroc Aggregated: 0.9553 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 64 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Accuracy Sensor 0 | Auroc Sensor 0 | Accuracy Sensor 1 | Auroc Sensor 1 | Accuracy Sensor 2 | Auroc Sensor 2 | Accuracy Aggregated | Auroc Aggregated | |:-------------:|:------:|:----:|:---------------:|:--------:|:-----------------:|:--------------:|:-----------------:|:--------------:|:-----------------:|:--------------:|:-------------------:|:----------------:| | 0.287 | 0.9997 | 781 | 0.4392 | 0.8094 | 0.8151 | 0.8977 | 0.8235 | 0.9036 | 0.8395 | 0.9106 | 0.7594 | 0.8793 | | 0.2108 | 1.9994 | 1562 | 0.2409 | 0.9058 | 0.9011 | 0.9242 | 0.9062 | 0.9344 | 0.9238 | 0.9424 | 0.8920 | 0.9178 | | 0.1549 | 2.9990 | 2343 | 0.2347 | 0.9119 | 0.9185 | 0.9519 | 0.8929 | 0.9546 | 0.9481 | 0.9605 | 0.8883 | 0.9476 | | 0.0887 | 4.0 | 3125 | 0.2867 | 0.9139 | 0.9243 | 0.9558 | 0.9057 | 0.9547 | 0.9473 | 0.9653 | 0.8785 | 0.9543 | | 0.0444 | 4.9984 | 3905 | 0.3757 | 0.9134 | 0.9235 | 0.9559 | 0.8989 | 0.9539 | 0.9486 | 0.9653 | 0.8826 | 0.9553 | ### Framework versions - Transformers 4.41.0 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1