File size: 13,013 Bytes
96fed26
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fa3b583b130>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa3b583b1c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa3b583b250>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa3b583b2e0>", "_build": "<function ActorCriticPolicy._build at 0x7fa3b583b370>", "forward": "<function ActorCriticPolicy.forward at 0x7fa3b583b400>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fa3b583b490>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa3b583b520>", "_predict": "<function ActorCriticPolicy._predict at 0x7fa3b583b5b0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa3b583b640>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa3b583b6d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa3b583b760>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fa3b5833380>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1686805435611272723, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": null, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQDDkZ2pyZKGMAWyUTQkBjAF0lEdAjJqq+zt1IXV9lChoBkdARrPLgXMyJ2gHS9doCEdAjLFVWbPQfXV9lChoBkdAZW3TSb6P82gHTegDaAhHQIyyAIBzV+Z1fZQoaAZHQGBocbzbvgFoB03oA2gIR0CMsgFFlTWHdX2UKGgGR0BlzRswco6TaAdN6ANoCEdAjLQ7OeJ53XV9lChoBkdAYcSrc0tRN2gHTegDaAhHQIy20ny/bj91fZQoaAZHQGXStthuwX9oB03oA2gIR0CMuMOEM9bHdX2UKGgGR0BlFZAlfJFLaAdN6ANoCEdAjLkVHFxXGXV9lChoBkdAZVWUHIIWxmgHTegDaAhHQIy6akGiYb91fZQoaAZHQGPMcDSw4bVoB03oA2gIR0CMwSTAWSEEdX2UKGgGR0Bmj3QSi/O/aAdN6ANoCEdAjO1uJ+DvmnV9lChoBkdAY7sblzU7S2gHTegDaAhHQIzx1EiMYMx1fZQoaAZHQGP5LSuyNXJoB03oA2gIR0CM/WyBTXJ6dX2UKGgGR0BncVtoBaLXaAdN6ANoCEdAjQLMF+uvEHV9lChoBkdAX4RqBVdX1mgHTegDaAhHQI0DweFL39J1fZQoaAZHQFdA557gKnhoB03oA2gIR0CNBSCLdepodX2UKGgGR0ArRQla8pTdaAdNAQFoCEdAjQj8CHRCyHV9lChoBkdAX8KCBf8dgmgHTegDaAhHQI0PuUfPomp1fZQoaAZHQGLnwyylenhoB03oA2gIR0CNM54nndO7dX2UKGgGR0BjlqQPqcEvaAdN6ANoCEdAjTQ8Hv+fiHV9lChoBkdAZQatsenyeGgHTegDaAhHQI00OTot+Th1fZQoaAZHQGPbeJHiFTNoB03oA2gIR0CNNhpSJj2BdX2UKGgGR0BiDRptaY/naAdN6ANoCEdAjThEd3jdYXV9lChoBkdAYwkBJZntfGgHTegDaAhHQI053GKhtch1fZQoaAZHQGFELzPKMehoB03oA2gIR0CNOiDpTuOTdX2UKGgGR0BnwOwqy4WlaAdN6ANoCEdAjTtAezUqhHV9lChoBkdAYwT0p3HJcWgHTegDaAhHQI1A5wOvt+l1fZQoaAZHQGJniPIXCTFoB03oA2gIR0CNQ6EVWS2ZdX2UKGgGR0BhFEv4/NaAaAdN6ANoCEdAjXlcwHqu83V9lChoBkdAYuBRSgoPTWgHTegDaAhHQI1+Po7muDB1fZQoaAZHQGOJYXGff41oB03oA2gIR0CNfyFlkH2RdX2UKGgGR0BmFx+YtxuLaAdN6ANoCEdAjYBvVd5Y5nV9lChoBkdAZB8nQ6ZH/mgHTegDaAhHQI2EFEgGKQ91fZQoaAZHQGOuH752yLRoB03oA2gIR0CNis/i5uqFdX2UKGgGR0BHJeHi3ocJaAdL9WgIR0CNkzr8iwB6dX2UKGgGR0BkkS508vEkaAdN6ANoCEdAjazuKGcnV3V9lChoBkdAYokvQnhKlGgHTegDaAhHQI2tfzMA3kx1fZQoaAZHQGYzTltCRfZoB03oA2gIR0CNrXpEhJRPdX2UKGgGR0BmTkm2LHdXaAdN6ANoCEdAja9FxGUfP3V9lChoBkdAZR2g+yJKrmgHTegDaAhHQI2xYwblzU91fZQoaAZHQGSFrdnCfpVoB03oA2gIR0CNsveLNwBHdX2UKGgGR0BiEctbs4T9aAdN6ANoCEdAjbM//vOQhnV9lChoBkdAX3FO0svqT2gHTegDaAhHQI20S55JK8N1fZQoaAZHQGLJj1Gsmv5oB03oA2gIR0CNuaSAYpDvdX2UKGgGR0Bj49lI3BHkaAdN6ANoCEdAjbxlefI0ZXV9lChoBkdAKLsF+uvECWgHS/ZoCEdAjb19YwIt2HV9lChoBkdANNONDMNc4mgHS+JoCEdAjeb4B/7SA3V9lChoBkdAcedLRa5f+mgHTQADaAhHQI3o2FzuF6B1fZQoaAZHQGOTLy1/lQxoB03oA2gIR0CN8IcFQl8gdX2UKGgGR0Bm95gTh5xBaAdN6ANoCEdAjfT22gFotnV9lChoBkdAZHUm51/2CmgHTegDaAhHQI33DVOKwZB1fZQoaAZHQGMQM72criFoB03oA2gIR0COAbPP9kz5dX2UKGgGR0Bli4c7yQPqaAdN6ANoCEdAjgqFNlAeJnV9lChoBkdAY3y7jkuHvmgHTegDaAhHQI4jbQmeDnN1fZQoaAZHQGRM1Da4+bFoB03oA2gIR0COI2tJWeYldX2UKGgGR0BiTplFtsN2aAdN6ANoCEdAjiVBvze41HV9lChoBkdAZf3g/keZHGgHTegDaAhHQI4pAukDZDl1fZQoaAZHQGaFZd4Vym1oB03oA2gIR0COKU5YHPeIdX2UKGgGR0BiacFr2xptaAdN6ANoCEdAjiqAgHNX5nV9lChoBkdAXxDKp1ie/mgHTegDaAhHQI4wqhxo7FN1fZQoaAZHQGMV3pfQa75oB03oA2gIR0COM6wW3z+WdX2UKGgGR0BlJZIczZYgaAdN6ANoCEdAjjTdQoCuEHV9lChoBkdAZ+8pVjqfOGgHTegDaAhHQI43TQmeDnN1fZQoaAZHQF8t2/SH/LloB03oA2gIR0COZRP2wmmcdX2UKGgGR0BibCHmA9V4aAdN6ANoCEdAjmysunMt9XV9lChoBkdAb0PRceKba2gHTbYDaAhHQI5vLFl05lx1fZQoaAZHQGCRUZvUBn1oB03oA2gIR0COcO//NqxkdX2UKGgGR0BAh2Y4Qz1saAdL1mgIR0COdNLTQVsUdX2UKGgGR0BkPASOBDohaAdN6ANoCEdAjnx4GD+R5nV9lChoBkdAZTDrxAjY7WgHTegDaAhHQI6EpA+pwS91fZQoaAZHQG8s0ZFXq7loB01NAWgIR0COj0Ml1KXfdX2UKGgGR0Byn6e2/i5vaAdNcQNoCEdAjpHHLRrrPnV9lChoBkdAZFRWXC0ngGgHTegDaAhHQI6bml2vB8B1fZQoaAZHQGWgfc32mHhoB03oA2gIR0COnV/QSi/PdX2UKGgGR0BjiEGZ/kNnaAdN6ANoCEdAjqE6aLGaQXV9lChoBkdAZI97uUliSmgHTegDaAhHQI6hhvrGBFx1fZQoaAZHQGRGrsrupjtoB03oA2gIR0COos+V1Oj7dX2UKGgGR0BgfvSSeRPoaAdN6ANoCEdAjql29DhLoXV9lChoBkdAZeHfpljEvWgHTegDaAhHQI6sptBOYY11fZQoaAZHQGUTLM1TBIpoB03oA2gIR0COreZUkv9MdX2UKGgGR0BjKD1h9b5eaAdN6ANoCEdAjrB3tjTa03V9lChoBkdAZ4r+717IDGgHTegDaAhHQI7el+y7f511fZQoaAZHQGcrgk9lmOFoB03oA2gIR0CO4TFS88LbdX2UKGgGR0Bkad6HCXQdaAdN6ANoCEdAjuMfT9bX6XV9lChoBkdAbL6s8xKxs2gHTbUBaAhHQI7mfcpLEk11fZQoaAZHQHEcT7l7tzFoB02XAWgIR0CO7JPY4ACGdX2UKGgGR0BkWqMFUyYYaAdN6ANoCEdAju7BHkLhJnV9lChoBkdAZv/349HMEGgHTegDaAhHQI72wkPczqN1fZQoaAZHQHLhvd2xIJ9oB00wAmgIR0CO/VYXfqHHdX2UKGgGR0BjhXd9Dx9YaAdN6ANoCEdAjwGcLronr3V9lChoBkdAZGz7XxvvSmgHTegDaAhHQI8EQvxpcop1fZQoaAZHQHEc2xD9fkZoB02qAmgIR0CPBlVuJk5IdX2UKGgGR0Bws28f3evZaAdNLQJoCEdAjw39FOO803V9lChoBkdAYuAZtNzr/2gHTegDaAhHQI8OQvalDWt1fZQoaAZHQGHfKEeyRjloB03oA2gIR0CPD/fNzKcNdX2UKGgGR0Bi55fQa72+aAdN6ANoCEdAjxQRSP2f03V9lChoBkdAZE64rBj4H2gHTegDaAhHQI8VUK5TZQJ1fZQoaAZHQG/BrMcIZ65oB010AWgIR0CPGy/0NBnjdX2UKGgGR0BBamP5pJwsaAdL32gIR0CPIRFirksCdX2UKGgGR0Bmx2rELpiaaAdN6ANoCEdAjyOR/3Fkx3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True  True  True  True  True  True  True  True]", "bounded_above": "[ True  True  True  True  True  True  True  True]", "_shape": [8], "low": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "low_repr": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high_repr": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV3wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVi9ob21lL29jdGlwdXMvYW5hY29uZGEzL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLhEMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxWL2hvbWUvb2N0aXB1cy9hbmFjb25kYTMvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV3wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVi9ob21lL29jdGlwdXMvYW5hY29uZGEzL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLhEMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxWL2hvbWUvb2N0aXB1cy9hbmFjb25kYTMvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-5.19.0-43-generic-x86_64-with-glibc2.35 # 44~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Mon May 22 13:39:36 UTC 2", "Python": "3.10.9", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu117", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}