File size: 13,203 Bytes
455a23d
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f939c95ff40>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f939c96c040>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f939c96c0d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f939c96c160>", "_build": "<function ActorCriticPolicy._build at 0x7f939c96c1f0>", "forward": "<function ActorCriticPolicy.forward at 0x7f939c96c280>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f939c96c310>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f939c96c3a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f939c96c430>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f939c96c4c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f939c96c550>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f939c96c5e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f939d1df280>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1000448, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1686796064647751043, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": null, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVJwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHEuzQmeDnOMAWyUTQsBjAF0lEdAkPr+HnEET3V9lChoBkfAOD+K4x1xKmgHS9ZoCEdAkPvtCE6DG3V9lChoBkdAcKWj+aScLGgHTQEBaAhHQJD9BI8QqZt1fZQoaAZHQHERaQ3gk1NoB00lAWgIR0CQ/kfZmI0qdX2UKGgGR8BIJjhcZ9/jaAdNEQFoCEdAkP+wSvkilnV9lChoBkdAcIzd56dDpmgHTfgBaAhHQJEB4WN3np11fZQoaAZHQCMhTn7pFCtoB0u+aAhHQJECtDF6zE91fZQoaAZHwDNcfgaWHDdoB0vHaAhHQJEDxigCfYl1fZQoaAZHv7mo73fyf+VoB0vWaAhHQJEEsGY8dPt1fZQoaAZHQGv6o4lyBCloB01LAWgIR0CRBhdWQwK0dX2UKGgGR0BvPQ1zhgmaaAdNmQFoCEdAkQgE03wTd3V9lChoBkdAcXgpQUHpr2gHTSsBaAhHQJEJSfqX4TN1fZQoaAZHQHENSLdepn9oB01SAWgIR0CRCrktVaOhdX2UKGgGR0BtAyFyq+8HaAdNRwFoCEdAkQxWTHKfWnV9lChoBkdAbwWciGFi8WgHTTECaAhHQJEOwxsVLzx1fZQoaAZHv/47uDzyz5ZoB0vlaAhHQJEPwYqG1x91fZQoaAZHQHCenUx20RhoB02HAWgIR0CREbMUypJgdX2UKGgGR0BxOKOtGNJfaAdNXgFoCEdAkRNJtzjm0XV9lChoBkdAcJsSzgMtsmgHTR0BaAhHQJEUiEf1Yhd1fZQoaAZHQHDvDUVi4KBoB002AWgIR0CRFiVBD5TIdX2UKGgGR0Bvu/HzYmLMaAdNqQNoCEdAkRotIPK+z3V9lChoBkdAJdFBppN9IGgHS95oCEdAkRthBVuJlHV9lChoBkdAccx8YAKfF2gHTQEBaAhHQJEcfOVxCIF1fZQoaAZHQGCGqYJE6T5oB03oA2gIR0CRIQ94NZvDdX2UKGgGR0BwEgZDRc/uaAdNjAJoCEdAkSQeEM9bHXV9lChoBkdAPuRH09QoC2gHS99oCEdAkSUUbPyCnXV9lChoBkdAcBfyULUkOmgHS+xoCEdAkSYX+IdlunV9lChoBkdAcTcM1jy4F2gHTQcBaAhHQJEnPi83+/B1fZQoaAZHwA/Q2MsH0K9oB0vKaAhHQJEoHIo3Jgd1fZQoaAZHQHA9k7Sy+pRoB014AWgIR0CRKfjcEeQudX2UKGgGR0Bw6JN47ihnaAdL4GgIR0CRKvH6/IsAdX2UKGgGR0BHooT4+KTCaAdL0WgIR0CRK9hLoOhCdX2UKGgGR0Bvcph4MWoFaAdNGAFoCEdAkS1IUSIxg3V9lChoBkdAadN5N47ihmgHTUYBaAhHQJEur2tdRix1fZQoaAZHwACskIHC4z9oB0vgaAhHQJEvoyAQQMB1fZQoaAZHQG6BYKQaJhxoB01DAWgIR0CRMQcc2itadX2UKGgGR0BtAtoWYWtVaAdNZAFoCEdAkTLKWHDaXnV9lChoBkdAbCm3QUpNK2gHTQ4BaAhHQJEz8Lv1DjR1fZQoaAZHQG4UQG4ZuQ9oB00zAWgIR0CRNUJZ4fOldX2UKGgGR0Bo2ZtHhCMQaAdNBgJoCEdAkTfTc6/7BXV9lChoBkdAbVPkCmuTzWgHTRABaAhHQJE4+e9SMtN1fZQoaAZHQEvj+KjzqbBoB0v+aAhHQJE6DOPeYUp1fZQoaAZHQG8V3974SHxoB00kAWgIR0CRO4T0g8r7dX2UKGgGR0Bw7/IGQjlgaAdNKQFoCEdAkTzYSUTtcHV9lChoBkdAbYdpcHGCI2gHTVQBaAhHQJE+XZHuqm11fZQoaAZHQHCig9V3ljpoB00PAWgIR0CRP659E1EWdX2UKGgGR0BwjdRUFSsKaAdNPAFoCEdAkUFGuTzNEHV9lChoBkdAcJw7wazeGmgHTQkBaAhHQJFCbyLAHml1fZQoaAZHQHCFO40/GERoB016AmgIR0CRRW0ZWJaadX2UKGgGR0BxSZ3np0OmaAdNMAFoCEdAkUbzwMH8j3V9lChoBkfARfCuSwGGEmgHS+9oCEdAkUgL8zhxYXV9lChoBkfAGEXQ+lj3EmgHS9RoCEdAkUjsqOLiuXV9lChoBkdAb4TjZL7GemgHTRgDaAhHQJFMoIC2c8V1fZQoaAZHP+Cj4593KSxoB0vraAhHQJFNpNWU8mt1fZQoaAZHwEswALApKBdoB0v8aAhHQJFO/kDIRyx1fZQoaAZHwESAvQnhKlJoB0u7aAhHQJFPz+yZ8a51fZQoaAZHQG+AMAFPi1loB00hAWgIR0CRUTr2g398dX2UKGgGR0BsGFs3yZrpaAdN2AFoCEdAkVN/A44p+nV9lChoBkdAarQIu5BkZ2gHTVoBaAhHQJFU+zt1IRR1fZQoaAZHQHFnAwoLG71oB00CAWgIR0CRVhWXC0ngdX2UKGgGR0AeGSmqHXVcaAdL1mgIR0CRVwI+nqFAdX2UKGgGR0BAnc580DU3aAdL2mgIR0CRWCbADaGpdX2UKGgGR0Bv7PxWkrPMaAdNuwFoCEdAkVoIxxkupXV9lChoBkdAbtlAJswcpGgHTdYBaAhHQJFcD9hqj8F1fZQoaAZHQFwpxh2GIsRoB03oA2gIR0CRYJVbiZOSdX2UKGgGR0AoANQTEit8aAdLxmgIR0CRYaSPU8V6dX2UKGgGR0Bv9ZVsDW9UaAdNqQFoCEdAkWNxmXgLqnV9lChoBkfAPTUpiI+GGmgHTQ8BaAhHQJFkm+PBBRh1fZQoaAZHQG2jTJZGKAJoB002AWgIR0CRZjvPC2tudX2UKGgGR0BsqXKEFnqWaAdNRQFoCEdAkWenV09yLnV9lChoBkdAXQGxZ+x4ZGgHTegDaAhHQJFsPgaWHDd1fZQoaAZHQCCVGI9C/oJoB0vGaAhHQJFtGJemelN1fZQoaAZHQF/qyCWeHzpoB03oA2gIR0CRcbtXgccVdX2UKGgGR0BwMuQuEmICaAdNPgFoCEdAkXMbX+VC5XV9lChoBkdAcM9X4CZF5WgHTUQBaAhHQJF0t8x9G7V1fZQoaAZHwD6d0+1SflJoB0vzaAhHQJF1w7cO9WZ1fZQoaAZHQFzXTn7pFCtoB03oA2gIR0CRemFhXr+pdX2UKGgGR0BQAwfhddE9aAdN6ANoCEdAkX7+fh/AkHV9lChoBkdAcEzt03fhuWgHTSkBaAhHQJGASF/QSjB1fZQoaAZHQHCvdugpSaVoB00pAWgIR0CRgccH4XXRdX2UKGgGR0Ax9EOy3Td+aAdL12gIR0CRgraXa8HwdX2UKGgGR0Bvf+APNFBqaAdNMgFoCEdAkYQE3bVSXXV9lChoBkfAE6qFh5PdmGgHTRgBaAhHQJGFOBkI5YJ1fZQoaAZHP9jD+BH09QpoB0u9aAhHQJGGB5kbxVh1fZQoaAZHQGsZefh/Aj9oB01ZA2gIR0CRieTJQtSRdX2UKGgGR0Bvy70rbxmTaAdNGQFoCEdAkYtQ5Jbt7nV9lChoBkdAcIDAPd2xIWgHS/poCEdAkYxkBCD28XV9lChoBkdAQXh/G2kSEmgHS/1oCEdAkY14M4LkS3V9lChoBkdAcAKYcNpdr2gHTZIBaAhHQJGPOkvboKV1fZQoaAZHQGny+RHPNV1oB00XAmgIR0CRke3Roh6jdX2UKGgGR8AvN48EFGG3aAdNFQFoCEdAkZMfI8yN43V9lChoBkdAb0UMWoFV1mgHTckBaAhHQJGVZnuiN851fZQoaAZHQG0G4ptrKvFoB02DAWgIR0CRlxgCwKSgdX2UKGgGR8A5ajKPn0TUaAdL+mgIR0CRmCsSCe3AdX2UKGgGR0BsQqzZ6D5CaAdNdAFoCEdAkZoCuMdcS3V9lChoBkfAMl5N47ihnWgHS+ZoCEdAkZsBESdvsXV9lChoBkdAcRRD+zdDY2gHTQoCaAhHQJGdR0U47zV1fZQoaAZHQGloVgYxcmloB00yAWgIR0CRns/yGzrvdX2UKGgGR0BwAlwuM+/yaAdNvQFoCEdAkaC7SiM5wXV9lChoBkfASW3bj94u9WgHTSgBaAhHQJGh/qkdmxt1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 7816, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVHgMAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJSFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoO4oQcSKyS4i22YqhcKXLwrLCe4wDaW5jlIoQ7XV38Tw2V2pTx6uiyRpoE3WMCmhhc191aW50MzKUSwCMCHVpbnRlZ2VylEsAdWJ1Yi4=", "dtype": "float32", "bounded_below": "[ True  True  True  True  True  True  True  True]", "bounded_above": "[ True  True  True  True  True  True  True  True]", "_shape": [8], "low": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "low_repr": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high_repr": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "_np_random": "Generator(PCG64)"}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 512, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV3wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVi9ob21lL29jdGlwdXMvYW5hY29uZGEzL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLhEMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxWL2hvbWUvb2N0aXB1cy9hbmFjb25kYTMvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV3wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVi9ob21lL29jdGlwdXMvYW5hY29uZGEzL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLhEMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxWL2hvbWUvb2N0aXB1cy9hbmFjb25kYTMvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-5.19.0-43-generic-x86_64-with-glibc2.35 # 44~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Mon May 22 13:39:36 UTC 2", "Python": "3.10.9", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu117", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}