File size: 5,038 Bytes
67d652f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import os
os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID"   
#os.environ["CUDA_VISIBLE_DEVICES"]='0,1,2,3'
import sys
import argparse

parser = argparse.ArgumentParser()
parser.add_argument('-mode', type=str, help='rgb or flow')
parser.add_argument('-save_model', type=str)
parser.add_argument('-root', type=str)

args = parser.parse_args()


import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.optim import lr_scheduler
from torch.autograd import Variable

import torchvision
from torchvision import datasets, transforms
import videotransforms


import numpy as np

from pytorch_i3d import InceptionI3d

from charades_dataset import Charades as Dataset


def run(init_lr=0.1, max_steps=64e3, mode='rgb', root='/ssd/Charades_v1_rgb', train_split='charades/charades.json', batch_size=8*5, save_model=''):
    # setup dataset
    train_transforms = transforms.Compose([videotransforms.RandomCrop(224),
                                           videotransforms.RandomHorizontalFlip(),
    ])
    test_transforms = transforms.Compose([videotransforms.CenterCrop(224)])

    dataset = Dataset(train_split, 'training', root, mode, train_transforms)
    dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=True, num_workers=36, pin_memory=True)

    val_dataset = Dataset(train_split, 'testing', root, mode, test_transforms)
    val_dataloader = torch.utils.data.DataLoader(val_dataset, batch_size=batch_size, shuffle=True, num_workers=36, pin_memory=True)    

    dataloaders = {'train': dataloader, 'val': val_dataloader}
    datasets = {'train': dataset, 'val': val_dataset}

    
    # setup the model
    if mode == 'flow':
        i3d = InceptionI3d(400, in_channels=2)
        i3d.load_state_dict(torch.load('models/flow_imagenet.pt'))
    else:
        i3d = InceptionI3d(400, in_channels=3)
        i3d.load_state_dict(torch.load('models/rgb_imagenet.pt'))
    i3d.replace_logits(157)
    #i3d.load_state_dict(torch.load('/ssd/models/000920.pt'))
    i3d.cuda()
    i3d = nn.DataParallel(i3d)

    lr = init_lr
    optimizer = optim.SGD(i3d.parameters(), lr=lr, momentum=0.9, weight_decay=0.0000001)
    lr_sched = optim.lr_scheduler.MultiStepLR(optimizer, [300, 1000])


    num_steps_per_update = 4 # accum gradient
    steps = 0
    # train it
    while steps < max_steps:#for epoch in range(num_epochs):
        print 'Step {}/{}'.format(steps, max_steps)
        print '-' * 10

        # Each epoch has a training and validation phase
        for phase in ['train', 'val']:
            if phase == 'train':
                i3d.train(True)
            else:
                i3d.train(False)  # Set model to evaluate mode
                
            tot_loss = 0.0
            tot_loc_loss = 0.0
            tot_cls_loss = 0.0
            num_iter = 0
            optimizer.zero_grad()
            
            # Iterate over data.
            for data in dataloaders[phase]:
                num_iter += 1
                # get the inputs
                inputs, labels = data

                # wrap them in Variable
                inputs = Variable(inputs.cuda())
                t = inputs.size(2)
                labels = Variable(labels.cuda())

                per_frame_logits = i3d(inputs)
                # upsample to input size
                per_frame_logits = F.upsample(per_frame_logits, t, mode='linear')

                # compute localization loss
                loc_loss = F.binary_cross_entropy_with_logits(per_frame_logits, labels)
                tot_loc_loss += loc_loss.data[0]

                # compute classification loss (with max-pooling along time B x C x T)
                cls_loss = F.binary_cross_entropy_with_logits(torch.max(per_frame_logits, dim=2)[0], torch.max(labels, dim=2)[0])
                tot_cls_loss += cls_loss.data[0]

                loss = (0.5*loc_loss + 0.5*cls_loss)/num_steps_per_update
                tot_loss += loss.data[0]
                loss.backward()

                if num_iter == num_steps_per_update and phase == 'train':
                    steps += 1
                    num_iter = 0
                    optimizer.step()
                    optimizer.zero_grad()
                    lr_sched.step()
                    if steps % 10 == 0:
                        print '{} Loc Loss: {:.4f} Cls Loss: {:.4f} Tot Loss: {:.4f}'.format(phase, tot_loc_loss/(10*num_steps_per_update), tot_cls_loss/(10*num_steps_per_update), tot_loss/10)
                        # save model
                        torch.save(i3d.module.state_dict(), save_model+str(steps).zfill(6)+'.pt')
                        tot_loss = tot_loc_loss = tot_cls_loss = 0.
            if phase == 'val':
                print '{} Loc Loss: {:.4f} Cls Loss: {:.4f} Tot Loss: {:.4f}'.format(phase, tot_loc_loss/num_iter, tot_cls_loss/num_iter, (tot_loss*num_steps_per_update)/num_iter) 
    


if __name__ == '__main__':
    # need to add argparse
    run(mode=args.mode, root=args.root, save_model=args.save_model)