File size: 1,788 Bytes
f0ecbc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6bd163a
 
f0ecbc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6bd163a
3d55a6d
 
6bd163a
f0ecbc3
 
 
 
 
 
 
 
6bd163a
 
 
 
 
f0ecbc3
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
metrics:
- matthews_correlation
model-index:
- name: distilbert-base-uncased-finetuned-cola
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# distilbert-base-uncased-finetuned-cola

This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4341
- Matthews Correlation: 0.4600

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 9.881638457643646e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 37
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | Matthews Correlation |
|:-------------:|:-----:|:----:|:---------------:|:--------------------:|
| 0.45          | 1.0   | 1069 | 0.9061          | 0.2926               |
| 0.3901        | 2.0   | 2138 | 0.7333          | 0.3877               |
| 0.2976        | 3.0   | 3207 | 0.8140          | 0.3997               |
| 0.2158        | 4.0   | 4276 | 1.1014          | 0.4422               |
| 0.0857        | 5.0   | 5345 | 1.4341          | 0.4600               |


### Framework versions

- Transformers 4.38.1
- Pytorch 2.1.0+cu121
- Datasets 2.17.1
- Tokenizers 0.15.2