File size: 12,675 Bytes
8e5d8c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
import os
import json
import torch
import wandb
import datetime
import numpy as np
from tqdm import tqdm
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from segmentation_models_pytorch.base.modules import Activation

from SemanticModel.data_loader import SegmentationDataset
from SemanticModel.metrics import compute_mean_iou
from SemanticModel.image_preprocessing import get_training_augmentations, get_validation_augmentations
from SemanticModel.utilities import list_images, validate_dimensions

class ModelTrainer:
    def __init__(self, model_config, root_dir, epochs=40, train_size=1024, 
                 val_size=None, workers=2, batch_size=2, learning_rate=1e-4, 
                 step_count=2, decay_factor=0.8, wandb_config=None, 
                 optimizer='rmsprop', target_class=None, resume_path=None):
        
        self.config = model_config
        self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
        self.root_dir = root_dir
        self._initialize_training_params(epochs, train_size, val_size, workers, 
                                      batch_size, learning_rate, step_count, 
                                      decay_factor, optimizer, target_class)
        self._setup_directories()
        self._initialize_datasets()
        self._setup_optimizer()
        self._initialize_tracking()
        
        if resume_path:
            self._resume_training(resume_path)

    def _initialize_training_params(self, epochs, train_size, val_size, workers, 
                                  batch_size, learning_rate, step_count, 
                                  decay_factor, optimizer, target_class):
        self.epochs = epochs
        self.train_size = train_size
        self.val_size = val_size
        self.workers = workers
        self.batch_size = batch_size
        self.learning_rate = learning_rate
        self.step_schedule = self._calculate_step_schedule(epochs, step_count)
        self.decay_factor = decay_factor
        self.optimizer_type = optimizer
        self.target_class = target_class
        self.current_epoch = 1
        self.best_iou = 0.0
        self.best_epoch = 0
        self.classes = ['background'] + self.config.classes if self.config.background_flag else self.config.classes

    def _setup_directories(self):
        """Verifies and creates necessary directories."""
        self.train_dir = os.path.join(self.root_dir, 'train')
        self.val_dir = os.path.join(self.root_dir, 'val')
        
        required_subdirs = ['Images', 'Masks']
        for path in [self.train_dir] + ([self.val_dir] if os.path.exists(self.val_dir) else []):
            for subdir in required_subdirs:
                full_path = os.path.join(path, subdir)
                if not os.path.exists(full_path):
                    raise FileNotFoundError(f"Missing directory: {full_path}")

    def _initialize_datasets(self):
        """Sets up training and validation datasets."""
        self.train_dataset = SegmentationDataset(
            self.train_dir,
            classes=self.classes,
            augmentation=get_training_augmentations(self.train_size, self.train_size),
            preprocessing=self.config.preprocessing
        )
        
        if os.path.exists(self.val_dir):
            self.val_dataset = SegmentationDataset(
                self.val_dir,
                classes=self.classes,
                augmentation=get_validation_augmentations(
                    self.val_size or self.train_size,
                    self.val_size or self.train_size,
                    fixed_size=False
                ),
                preprocessing=self.config.preprocessing
            )
            self.val_loader = DataLoader(
                self.val_dataset, 
                batch_size=1, 
                shuffle=False, 
                num_workers=self.workers
            )
        else:
            self.val_dataset = self.train_dataset
            self.val_loader = DataLoader(
                self.val_dataset, 
                batch_size=1, 
                shuffle=False, 
                num_workers=self.workers
            )
        
        self.train_loader = DataLoader(
            self.train_dataset,
            batch_size=self.batch_size,
            shuffle=True,
            num_workers=self.workers
        )

    def _setup_optimizer(self):
        """Configures model optimizer."""
        optimizer_map = {
            'adam': torch.optim.Adam,
            'sgd': lambda params: torch.optim.SGD(params, momentum=0.9),
            'rmsprop': torch.optim.RMSprop
        }
        optimizer_class = optimizer_map.get(self.optimizer_type.lower())
        if not optimizer_class:
            raise ValueError(f"Unsupported optimizer: {self.optimizer_type}")
        
        self.optimizer = optimizer_class([{'params': self.config.model.parameters(), 
                                         'lr': self.learning_rate}])

    def _initialize_tracking(self):
        """Sets up training progress tracking."""
        timestamp = datetime.datetime.now().strftime("%m-%d-%Y_%H%M%S")
        self.output_dir = os.path.join(
            self.root_dir,
            f'model_outputs-{self.config.architecture}[{self.config.encoder}]-{timestamp}'
        )
        os.makedirs(self.output_dir, exist_ok=True)
        
        self.writer = SummaryWriter(log_dir=self.output_dir)
        self.metrics = {
            'best_epoch': self.best_epoch,
            'best_epoch_iou': self.best_iou,
            'last_epoch': 0,
            'last_epoch_iou': 0.0,
            'last_epoch_lr': self.learning_rate,
            'step_schedule': self.step_schedule,
            'decay_factor': self.decay_factor,
            'target_class': self.target_class or 'overall'
        }

    def _calculate_step_schedule(self, epochs, steps):
        """Calculates learning rate step schedule."""
        return list(map(int, np.linspace(0, epochs, steps + 2)[1:-1]))

    def train(self):
        """Executes training loop."""
        model = self.config.model.to(self.device)
        if torch.cuda.device_count() > 1:
            model = torch.nn.DataParallel(model)
            print(f'Using {torch.cuda.device_count()} GPUs')

        self._save_config()
        
        for epoch in range(self.current_epoch, self.epochs + 1):
            print(f'\nEpoch {epoch}/{self.epochs}')
            print(f'Learning rate: {self.optimizer.param_groups[0]["lr"]:.3e}')

            train_loss = self._train_epoch(model)
            val_loss, val_metrics = self._validate_epoch(model)

            self._update_tracking(epoch, train_loss, val_loss, val_metrics)
            self._adjust_learning_rate(epoch)
            self._save_checkpoints(model, epoch, val_metrics)

        print(f'\nTraining completed. Best {self.metrics["target_class"]} IoU: {self.best_iou:.3f}')
        return model, self.metrics

    def _train_epoch(self, model):
        """Executes single training epoch."""
        model.train()
        total_loss = 0
        sample_count = 0

        for batch in tqdm(self.train_loader, desc='Training'):
            images, masks = [x.to(self.device) for x in batch]
            self.optimizer.zero_grad()
            
            outputs = model(images)
            loss = self.config.loss(outputs, masks)
            loss.backward()
            self.optimizer.step()

            total_loss += loss.item() * len(images)
            sample_count += len(images)

        return total_loss / sample_count

    def _validate_epoch(self, model):
        """Executes validation pass."""
        model.eval()
        total_loss = 0
        predictions = []
        ground_truth = []
        
        with torch.no_grad():
            for batch in tqdm(self.val_loader, desc='Validation'):
                images, masks = [x.to(self.device) for x in batch]
                outputs = model(images)
                loss = self.config.loss(outputs, masks)
                
                total_loss += loss.item()
                
                if self.config.n_classes > 1:
                    predictions.extend([p.cpu().argmax(dim=0) for p in outputs])
                    ground_truth.extend([m.cpu().argmax(dim=0) for m in masks])
                else:
                    predictions.extend([(torch.sigmoid(p) > 0.5).float().squeeze().cpu() 
                                     for p in outputs])
                    ground_truth.extend([m.cpu().squeeze() for m in masks])

        metrics = compute_mean_iou(
            predictions,
            ground_truth,
            num_classes=len(self.classes),
            ignore_index=255
        )
        
        return total_loss / len(self.val_loader), metrics

    def _update_tracking(self, epoch, train_loss, val_loss, val_metrics):
        """Updates training metrics and logging."""
        mean_iou = val_metrics['mean_iou']
        print(f"\nLosses - Train: {train_loss:.3f}, Val: {val_loss:.3f}")
        print(f"Mean IoU: {mean_iou:.3f}")
        
        self.writer.add_scalar('Loss/train', train_loss, epoch)
        self.writer.add_scalar('Loss/val', val_loss, epoch)
        self.writer.add_scalar('IoU/mean', mean_iou, epoch)
        
        for idx, iou in enumerate(val_metrics['per_category_iou']):
            print(f"{self.classes[idx]} IoU: {iou:.3f}")
            self.writer.add_scalar(f'IoU/{self.classes[idx]}', iou, epoch)

    def _adjust_learning_rate(self, epoch):
        """Adjusts learning rate according to schedule."""
        if epoch in self.step_schedule:
            current_lr = self.optimizer.param_groups[0]['lr']
            new_lr = current_lr * self.decay_factor
            for param_group in self.optimizer.param_groups:
                param_group['lr'] = new_lr
            print(f'\nDecreased learning rate: {current_lr:.3e} -> {new_lr:.3e}')

    def _save_checkpoints(self, model, epoch, metrics):
        """Saves model checkpoints and metrics."""
        epoch_iou = (metrics['mean_iou'] if self.target_class is None 
                    else metrics['per_category_iou'][self.classes.index(self.target_class)])
        
        self.metrics.update({
            'last_epoch': epoch,
            'last_epoch_iou': round(float(epoch_iou), 3),
            'last_epoch_lr': self.optimizer.param_groups[0]['lr']
        })

        if epoch_iou > self.best_iou:
            self.best_iou = epoch_iou
            self.best_epoch = epoch
            self.metrics.update({
                'best_epoch': epoch,
                'best_epoch_iou': round(float(epoch_iou), 3),
                'overall_iou': round(float(metrics['mean_iou']), 3)
            })
            torch.save(model, os.path.join(self.output_dir, 'best_model.pth'))
            print(f'New best model saved (IoU: {epoch_iou:.3f})')

        torch.save(model, os.path.join(self.output_dir, 'last_model.pth'))
        with open(os.path.join(self.output_dir, 'metrics.json'), 'w') as f:
            json.dump(self.metrics, f, indent=4)

    def _save_config(self):
        """Saves training configuration."""
        config = {
            **self.config.config_data,
            'train_size': self.train_size,
            'val_size': self.val_size,
            'epochs': self.epochs,
            'batch_size': self.batch_size,
            'optimizer': self.optimizer_type,
            'workers': self.workers,
            'target_class': self.target_class or 'overall'
        }
        
        with open(os.path.join(self.output_dir, 'config.json'), 'w') as f:
            json.dump(config, f, indent=4)

    def _resume_training(self, resume_path):
        """Resumes training from checkpoint."""
        if not os.path.exists(resume_path):
            raise FileNotFoundError(f"Resume path not found: {resume_path}")

        required_files = {
            'model': 'last_model.pth',
            'metrics': 'metrics.json',
            'config': 'config.json'
        }
        
        paths = {k: os.path.join(resume_path, v) for k, v in required_files.items()}
        if not all(os.path.exists(p) for p in paths.values()):
            raise FileNotFoundError("Missing required checkpoint files")
        
        with open(paths['config']) as f:
            config = json.load(f)
        with open(paths['metrics']) as f:
            metrics = json.load(f)
        
        self.current_epoch = metrics['last_epoch'] + 1
        self.best_iou = metrics['best_epoch_iou']
        self.best_epoch = metrics['best_epoch']
        self.learning_rate = metrics['last_epoch_lr']
        
        print(f'Resuming training from epoch {self.current_epoch}')