Deep-Incubation / README.md
nzl-thu's picture
Update README.md
813b1b2
|
raw
history blame
6.05 kB

Deep Model Assembling

This repository contains the pre-trained models for Deep Model Assembling.

Title:  Deep Model Assembling
Authors:  Zanlin Ni, Yulin Wang, Jiangwei Yu, Haojun Jiang, Yue Cao, Gao Huang (Corresponding Author)
Institute: Tsinghua University and Beijing Academy of Artificial Intelligence (BAAI)
Publish:   arXiv preprint (arXiv 2212.04129)
Contact:  nzl22 at mails dot tsinghua dot edu dot cn

Overview

In this paper, we present a divide-and-conquer strategy for training large models. Our algorithm, Model Assembling, divides a large model into smaller modules, optimizes them independently, and then assembles them together. Though conceptually simple, our method significantly outperforms end-to-end (E2E) training in terms of both training efficiency and final accuracy. For example, on ViT-H, Model Assembling outperforms E2E training by 2.7%, while reducing the training cost by 43%.

Data Preparation

  • The ImageNet dataset should be prepared as follows:
data
β”œβ”€β”€ train
β”‚   β”œβ”€β”€ folder 1 (class 1)
β”‚   β”œβ”€β”€ folder 2 (class 1)
β”‚   β”œβ”€β”€ ...
β”œβ”€β”€ val
β”‚   β”œβ”€β”€ folder 1 (class 1)
β”‚   β”œβ”€β”€ folder 2 (class 1)
β”‚   β”œβ”€β”€ ...

Training on ImageNet-1K

  • You can add --use_amp 1 to train in PyTorch's Automatic Mixed Precision (AMP).
  • Auto-resuming is enabled by default, i.e., the training script will automatically resume from the latest ckpt in output_dir.
  • The effective batch size = NGPUS * batch_size * update_freq. We keep using an effective batch size of 2048. To avoid OOM issues, you may adjust these arguments accordingly.
  • We provide single-node training scripts for simplicity. For multi-node training, simply modify the training scripts accordingly with torchrun:
python -m torch.distributed.launch --nproc_per_node=${NGPUS} --master_port=23346 --use_env main.py ...

# modify the above code to

torchrun \
--nnodes=$NODES \
--nproc_per_node=$NGPUS \
--rdzv_backend=c10d \
--rdzv_endpoint=$MASTER_ADDR:60900 \
main.py ...
Pre-training meta models (click to expand).
PHASE=PT  # Pre-training
MODEL=base  # for base
# MODEL=large  # for large
# MODEL=huge  # for huge
NGPUS=8

args=(
--phase ${PHASE} 
--model vit_${MODEL}_patch16_224   # for base, large
# --model vit_${MODEL}_patch14_224   # for huge
--divided_depths 1 1 1 1 
--output_dir ./log_dir/${PHASE}/${MODEL}

--batch_size 256
--epochs 300 
--drop-path 0 
)

python -m torch.distributed.launch --nproc_per_node=${NGPUS} --master_port=23346 --use_env main.py "${args[@]}"
Modular training (click to expand).
PHASE=MT  # Modular Training
MODEL=base DEPTH=12  # for base
# MODEL=large DEPTH=24  # for large
# MODEL=huge DEPTH=32  # for huge
NGPUS=8

args=(
--phase ${PHASE} 
--model vit_${MODEL}_patch16_224   # for base, large
# --model vit_${MODEL}_patch14_224   # for huge
--meta_model ./log_dir/PT_${MODEL}/finished_checkpoint.pth  # loading the pre-trained meta model

--batch_size 128
--update_freq 2
--epochs 100 
--drop-path 0.1
)

# Modular training each target module. Each line can be executed in parallel.
python -m torch.distributed.launch --nproc_per_node=${NGPUS} --master_port=23346 --use_env main.py "${args[@]}" --idx 0 --divided_depths $((DEPTH/4)) 1 1 1 --output_dir ./log_dir/${PHASE}_${MODEL}_0
python -m torch.distributed.launch --nproc_per_node=${NGPUS} --master_port=23346 --use_env main.py "${args[@]}" --idx 1 --divided_depths 1 $((DEPTH/4)) 1 1 --output_dir ./log_dir/${PHASE}_${MODEL}_1
python -m torch.distributed.launch --nproc_per_node=${NGPUS} --master_port=23346 --use_env main.py "${args[@]}" --idx 2 --divided_depths 1 1 $((DEPTH/4)) 1 --output_dir ./log_dir/${PHASE}_${MODEL}_2
python -m torch.distributed.launch --nproc_per_node=${NGPUS} --master_port=23346 --use_env main.py "${args[@]}" --idx 3 --divided_depths 1 1 1 $((DEPTH/4)) --output_dir ./log_dir/${PHASE}_${MODEL}_3
Assemble & Fine-tuning (click to expand).
PHASE=FT  # Assemble & Fine-tuning
MODEL=base DEPTH=12  # for base
# MODEL=large DEPTH=24  # for large
# MODEL=huge DEPTH=32  # for huge
NGPUS=8

args=(
--phase ${PHASE} 
--model vit_${MODEL}_patch16_224   # for base, large
# --model vit_${MODEL}_patch14_224   # for huge
--incubation_models ./log_dir/MT_${MODEL}_*/finished_checkpoint.pth  # for assembling
--divided_depths $((DEPTH/4)) $((DEPTH/4)) $((DEPTH/4)) $((DEPTH/4)) \
--output_dir ./log_dir/${PHASE}_${MODEL}

--batch_size 64
--update_freq 4
--epochs 100 
--warmup-epochs 0
--clip-grad 1
--drop-path 0.1  # for base
# --drop-path 0.5  # for large
# --drop-path 0.6  # for huge
)

python -m torch.distributed.launch --nproc_per_node=${NGPUS} --master_port=23346 --use_env main.py "${args[@]}"

Citation

If you find our work helpful, please star🌟 this repo and citeπŸ“‘ our paper. Thanks for your support!

@article{Ni2022Assemb,
  title={Deep Model Assembling},
  author={Ni, Zanlin and Wang, Yulin and Yu, Jiangwei and Jiang, Haojun and Cao, Yue and Huang, Gao},
  journal={arXiv preprint arXiv:2212.04129},
  year={2022}
}

Acknowledgements

Our implementation is mainly based on deit. We thank to their clean codebase.

Contact

If you have any questions or concerns, please send mail to nzl22@mails.tsinghua.edu.cn.