File size: 7,720 Bytes
97f5553 0b858da 97f5553 0b858da a275bf9 0b858da a275bf9 0b858da a275bf9 0b858da a275bf9 0b858da a275bf9 0b858da a275bf9 0b858da a275bf9 0b858da a275bf9 0b858da a275bf9 0b858da a275bf9 97f5553 0b858da 7b26a2e 0b858da 5558698 0b858da |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 |
---
language:
- ru
library_name: nemo
datasets:
- mozilla-foundation/common_voice_10_0
- SberDevices/Golos
- Russian-LibriSpeech
- SOVA-Dataset
tags:
- automatic-speech-recognition
- speech
- audio
- CTC
- Conformer
- Transformer
- pytorch
- NeMo
- hf-asr-leaderboard
- Riva
license: cc-by-4.0
model-index:
- name: stt_ru_conformer_ctc_large
results:
- task:
type: Automatic Speech Recognition
name: speech-recognition
dataset:
name: Mozilla Common Voice 10.0
type: mozilla-foundation/common_voice_10_0
config: ru
split: test
args:
language: ru
metrics:
- name: Test WER
type: wer
value: 4.28
- task:
type: Automatic Speech Recognition
name: automatic-speech-recognition
dataset:
name: Mozilla Common Voice 10.0
type: mozilla-foundation/common_voice_10_0
config: ru
split: dev
args:
language: ru
metrics:
- name: Dev WER
type: wer
value: 3.94
- task:
type: Automatic Speech Recognition
name: automatic-speech-recognition
dataset:
name: Sberdevices Golos (crowd)
type: SberDevices/Golos
config: crowd
split: test
args:
language: ru
metrics:
- name: Test WER
type: wer
value: 2.77
- task:
type: Automatic Speech Recognition
name: automatic-speech-recognition
dataset:
name: Sberdevices Golos (farfield)
type: SberDevices/Golos
config: farfield
split: test
args:
language: ru
metrics:
- name: Test WER
type: wer
value: 7.15
- task:
type: Automatic Speech Recognition
name: automatic-speech-recognition
dataset:
name: Russian LibriSpeech
type: RuLS
config: ru
split: test
args:
language: ru
metrics:
- name: Test WER
type: wer
value: 13.60
---
# NVIDIA Conformer-Transducer Large (Russian)
<style>
img {
display: inline;
}
</style>
| [![Model architecture](https://img.shields.io/badge/Model_Arch-Conformer--Transducer-lightgrey#model-badge)](#model-architecture)
| [![Model size](https://img.shields.io/badge/Params-120M-lightgrey#model-badge)](#model-architecture)
| [![Language](https://img.shields.io/badge/Language-ru-lightgrey#model-badge)](#datasets)
This model transcribes speech into lowercase Cyrillic alphabet including space, and is trained on around 1636 hours of Russian speech data.
It is a non-autoregressive "large" variant of Conformer, with around 120 million parameters.
See the [model architecture](#model-architecture) section and [NeMo documentation](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/models.html#conformer-ctc) for complete architecture details.
## Usage
The model is available for use in the NeMo toolkit [3], and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset.
To train, fine-tune or play with the model you will need to install [NVIDIA NeMo](https://github.com/NVIDIA/NeMo). We recommend you install it after you've installed latest PyTorch version.
```
pip install nemo_toolkit['all']
```
### Automatically instantiate the model
```python
import nemo.collections.asr as nemo_asr
asr_model = nemo_asr.models.EncDecCTCModelBPE.from_pretrained(model_name="stt_ru_conformer_ctc_large")
```
### Transcribing using Python
Simply do:
```
asr_model.transcribe(['<your_audio>.wav'])
```
### Transcribing many audio files
```shell
python [NEMO_GIT_FOLDER]/examples/asr/transcribe_speech.py
pretrained_name="nvidia/stt_ru_conformer_ctc_large"
audio_dir="<DIRECTORY CONTAINING AUDIO FILES>"
```
### Input
This model accepts 16 kHz mono-channel Audio (wav files) as input.
### Output
This model provides transcribed speech as a string for a given audio sample.
## Model Architecture
Conformer-CTC model is a non-autoregressive variant of Conformer model [1] for Automatic Speech Recognition which uses CTC loss/decoding instead of Transducer. You may find more info on the detail of this model here: [Conformer-CTC Model](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/models.html#conformer-ctc).
## Training
The NeMo toolkit [3] was used for training the models for over several hundred epochs. These model are trained with this [example script](https://github.com/NVIDIA/NeMo/blob/main/examples/asr/asr_ctc/speech_to_text_ctc_bpe.py) and this [base config](https://github.com/NVIDIA/NeMo/blob/main/examples/asr/conf/conformer/conformer_ctc_bpe.yaml).
The tokenizers for these models were built using the text transcripts of the train set with this [script](https://github.com/NVIDIA/NeMo/blob/main/scripts/tokenizers/process_asr_text_tokenizer.py).
The vocabulary we use contains 33 characters:
```python
[' ', 'а', 'б', 'в', 'г', 'д', 'е', 'ж', 'з', 'и', 'й', 'к', 'л', 'м', 'н', 'о', 'п', 'р', 'с', 'т', 'у', 'ф', 'х', 'ц', 'ч', 'ш', 'щ', 'ъ', 'ы', 'ь', 'э', 'ю', 'я']
```
Rare symbols with diacritics were replaced during preprocessing.
The tokenizers for these models were built using the text transcripts of the train set with this [script](https://github.com/NVIDIA/NeMo/blob/main/scripts/tokenizers/process_asr_text_tokenizer.py).
### Datasets
All the models in this collection are trained on a composite dataset (NeMo ASRSET) comprising of more than a thousand hours of Russian speech:
- Mozilla Common Voice 10.0 (Russian) - train subset [28 hours]
- Golos - crowd [1070 hours] and fairfield [111 hours] subsets
- Russian LibriSpeech (RuLS) [92 hours]
- SOVA - RuAudiobooksDevices [260 hours] and RuDevices [75 hours] subsets
## Performance
The list of the available models in this collection is shown in the following table. Performances of the ASR models are reported in terms of Word Error Rate (WER%) with greedy decoding.
| Version | Tokenizer | Vocabulary Size | MCV 10.0 dev | MCV 10.0 test | GOLOS-crowd test | GOLOS-farfield test | RuLS test | Train Dataset |
|---------|-----------------------|-----------------|--------------|---------------|------------------|---------------------|-----------|---------------|
| 1.13.0 | SentencePiece Unigram | 128 | 3.94 | 4.28 | 2.77 | 7.15 | 13.60 | NeMo ASRSET |
## Limitations
Since this model was trained on publicly available speech datasets, the performance of this model might degrade for speech which includes technical terms, or vernacular that the model has not been trained on. The model might also perform worse for accented speech.
## Deployment with NVIDIA Riva
For the best real-time accuracy, latency, and throughput, deploy the model with [NVIDIA Riva](https://developer.nvidia.com/riva), an accelerated speech AI SDK deployable on-prem, in all clouds, multi-cloud, hybrid, at the edge, and embedded.
Additionally, Riva provides:
* World-class out-of-the-box accuracy for the most common languages with model checkpoints trained on proprietary data with hundreds of thousands of GPU-compute hours
* Best in class accuracy with run-time word boosting (e.g., brand and product names) and customization of acoustic model, language model, and inverse text normalization
* Streaming speech recognition, Kubernetes compatible scaling, and Enterprise-grade support
Check out [Riva live demo](https://developer.nvidia.com/riva#demos).
## References
- [1] [Conformer: Convolution-augmented Transformer for Speech Recognition](https://arxiv.org/abs/2005.08100)
- [2] [Google Sentencepiece Tokenizer](https://github.com/google/sentencepiece)
- [3] [NVIDIA NeMo Toolkit](https://github.com/NVIDIA/NeMo) |