File size: 8,645 Bytes
8f3ecc9 357e992 825ceea 1e0341e 6d8bf66 357e992 cbee3ed 1e0341e cbee3ed 2ecfee0 3b9ec1a 411d565 353f8f4 1e0341e 357e992 8f3ecc9 5f5918e aa23447 5f5918e 4f451fa 9e0c396 aa23447 1abfd6b 8fba6fa 885b9a8 9e0c396 4f451fa 5f5918e 26d25ec 5f5918e bbf650b 26d25ec 5f5918e 26d25ec 5f5918e f60b9ed 5f5918e aa23447 5f5918e 26d25ec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 |
---
language:
- en
library_name: nemo
datasets:
- librispeech_asr
- fisher_corpus
- Switchboard-1
- WSJ-0
- WSJ-1
- National Singapore Corpus Part 1
- National Singapore Corpus Part 6
- vctk
- VoxPopuli (EN)
- Europarl-ASR (EN)
- Multilingual LibriSpeech (2000 hours)
- mozilla-foundation/common_voice_7_0
thumbnail: null
tags:
- automatic-speech-recognition
- speech
- audio
- CTC
- Conformer
- Transformer
- pytorch
- NeMo
- hf-asr-leaderboard
license: cc-by-4.0
widget:
- example_title: Librispeech sample 1
src: https://cdn-media.huggingface.co/speech_samples/sample1.flac
- example_title: Librispeech sample 2
src: https://cdn-media.huggingface.co/speech_samples/sample2.flac
model-index:
- name: stt_en_conformer_ctc_large
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: LibriSpeech (clean)
type: librispeech_asr
config: clean
split: test
args:
language: en
metrics:
- name: Test WER
type: wer
value: 2.2
- task:
type: Automatic Speech Recognition
name: automatic-speech-recognition
dataset:
name: LibriSpeech (other)
type: librispeech_asr
config: other
split: test
args:
language: en
metrics:
- name: Test WER
type: wer
value: 4.3
- task:
type: Automatic Speech Recognition
name: automatic-speech-recognition
dataset:
name: Multilingual LibriSpeech
type: facebook/multilingual_librispeech
config: english
split: test
args:
language: en
metrics:
- name: Test WER
type: wer
value: 7.2
- task:
type: Automatic Speech Recognition
name: automatic-speech-recognition
dataset:
name: Mozilla Common Voice 7.0
type: mozilla-foundation/common_voice_7_0
config: en
split: test
args:
language: en
metrics:
- name: Test WER
type: wer
value: 8.0
- task:
type: Automatic Speech Recognition
name: automatic-speech-recognition
dataset:
name: Mozilla Common Voice 8.0
type: mozilla-foundation/common_voice_8_0
config: en
split: test
args:
language: en
metrics:
- name: Test WER
type: wer
value: 9.48
- task:
type: Automatic Speech Recognition
name: automatic-speech-recognition
dataset:
name: Wall Street Journal 92
type: wsj_0
args:
language: en
metrics:
- name: Test WER
type: wer
value: 2.0
- task:
type: Automatic Speech Recognition
name: automatic-speech-recognition
dataset:
name: Wall Street Journal 93
type: wsj_1
args:
language: en
metrics:
- name: Test WER
type: wer
value: 2.9
- task:
type: Automatic Speech Recognition
name: automatic-speech-recognition
dataset:
name: National Singapore Corpus
type: nsc_part_1
args:
language: en
metrics:
- name: Test WER
type: wer
value: 7.0
---
## Model Overview
This model transcribes speech in lower case English alphabet along with spaces and apostrophes.
It is a "large" versions of Conformer-CTC (around 120M parameters) model.
## NVIDIA Riva: Deployment
This model can be efficiently deployed with [NVIDIA Riva](https://developer.nvidia.com/riva), an accelerated speech AI SDK, on-premises, on the edge or with any cloud provider.
Additionally, with RIVA you get:
* Streaming speech recognition mode
* Ability to boost specific words (e.g. brand and product names)
* Conformer checkpoints trained on proprietary data
## NVIDIA NeMo: Training
To train, fine-tune or play with the model you will need to install [NVIDIA NeMo](https://github.com/NVIDIA/NeMo). We recommend you install it after you've installed latest Pytorch version.
```
pip install nemo_toolkit['all']
```
## How to Use this Model
The model is available for use in the NeMo toolkit [3], and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset.
### Automatically instantiate the model
```python
import nemo.collections.asr as nemo_asr
asr_model = nemo_asr.models.EncDecCTCModelBPE.from_pretrained("nvidia/stt_en_conformer_ctc_large")
```
### Transcribing using Python
First, let's get a sample
```
wget https://dldata-public.s3.us-east-2.amazonaws.com/2086-149220-0033.wav
```
Then simply do:
```
asr_model.transcribe(['2086-149220-0033.wav'])
```
### Transcribing many audio files
```shell
python [NEMO_GIT_FOLDER]/examples/asr/transcribe_speech.py \
pretrained_name="nvidia/stt_en_conformer_ctc_large" \
audio_dir="<DIRECTORY CONTAINING AUDIO FILES>"
```
### Input
This model accepts 16000 KHz Mono-channel Audio (wav files) as input.
### Output
This model provides transcribed speech as a string for a given audio sample.
## Model Architecture
Conformer-CTC model is a non-autoregressive variant of Conformer model [1] for Automatic Speech Recognition which uses CTC loss/decoding instead of Transducer. You may find more info on the detail of this model here: [Conformer-CTC Model](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/models.html).
## Training
The NeMo toolkit [3] was used for training the models for over several hundred epochs. These model are trained with this [example script](https://github.com/NVIDIA/NeMo/blob/main/examples/asr/asr_ctc/speech_to_text_ctc_bpe.py) and this [base config](https://github.com/NVIDIA/NeMo/blob/main/examples/asr/conf/conformer/conformer_ctc_bpe.yaml).
The tokenizers for these models were built using the text transcripts of the train set with this [script](https://github.com/NVIDIA/NeMo/blob/main/scripts/tokenizers/process_asr_text_tokenizer.py).
The checkpoint of the language model used as the neural rescorer can be found [here](https://ngc.nvidia.com/catalog/models/nvidia:nemo:asrlm_en_transformer_large_ls). You may find more info on how to train and use language models for ASR models here: [ASR Language Modeling](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/asr_language_modeling.html)
### Datasets
All the models in this collection are trained on a composite dataset (NeMo ASRSET) comprising of several thousand hours of English speech:
- Librispeech 960 hours of English speech
- Fisher Corpus
- Switchboard-1 Dataset
- WSJ-0 and WSJ-1
- National Speech Corpus (Part 1, Part 6)
- VCTK
- VoxPopuli (EN)
- Europarl-ASR (EN)
- Multilingual Librispeech (MLS EN) - 2,000 hours subset
- Mozilla Common Voice (v7.0)
Note: older versions of the model may have trained on smaller set of datasets.
## Performance
The list of the available models in this collection is shown in the following table. Performances of the ASR models are reported in terms of Word Error Rate (WER%) with greedy decoding.
| Version | Tokenizer | Vocabulary Size | LS test-other | LS test-clean | WSJ Eval92 | WSJ Dev93 | NSC Part 1 | MLS Test | MLS Dev | MCV Test 6.1 |Train Dataset |
|---------|-----------------------|-----------------|---------------|---------------|------------|-----------|-------|------|-----|-------|---------|
| 1.6.0 | SentencePiece Unigram | 128 | 4.3 | 2.2 | 2.0 | 2.9 | 7.0 | 7.2 | 6.5 | 8.0 | NeMo ASRSET 2.0 |
You may use language models to improve the accuracy of the models. The WER(%) of the latest model with different language modeling techniques are reported in the following table.
| Language Modeling | Training Dataset | LS test-other | LS test-clean | Comment |
|-------------------------------------|-------------------------|---------------|---------------|---------------------------------------------------------|
|N-gram LM | LS Train + LS LM Corpus | 3.5 | 1.8 | N=10, beam_width=128, n_gram_alpha=1.0, n_gram_beta=1.0 |
|Neural Rescorer(Transformer) | LS Train + LS LM Corpus | 3.4 | 1.7 | N=10, beam_width=128 |
|N-gram + Neural Rescorer(Transformer)| LS Train + LS LM Corpus | 3.2 | 1.8 | N=10, beam_width=128, n_gram_alpha=1.0, n_gram_beta=1.0 |
## Limitations
Since this model was trained on publically available speech datasets, the performance of this model might degrade for speech which includes technical terms, or vernacular that the model has not been trained on. The model might also perform worse for accented speech.
## References
[1] [Conformer: Convolution-augmented Transformer for Speech Recognition](https://arxiv.org/abs/2005.08100)
[2] [Google Sentencepiece Tokenizer](https://github.com/google/sentencepiece)
[3] [NVIDIA NeMo Toolkit](https://github.com/NVIDIA/NeMo) |