File size: 9,736 Bytes
5e04eb8
e9993e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f0724b
5e04eb8
e9993e4
 
 
 
 
 
b1799b3
e9993e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f0724b
e9993e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e04eb8
e9993e4
 
 
 
 
 
 
 
 
 
 
 
 
 
b1799b3
e9993e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f0724b
e9993e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c87e162
e9993e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f0724b
e9993e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
---
language:
- en
library_name: nemo
datasets:
- librispeech_asr
- fisher_corpus
- Switchboard-1
- WSJ-0
- WSJ-1
- National-Singapore-Corpus-Part-1
- National-Singapore-Corpus-Part-6
- vctk
- voxpopuli
- europarl
- multilingual_librispeech
- mozilla-foundation/common_voice_8_0
- MLCommons/peoples_speech
thumbnail: null
tags:
- automatic-speech-recognition
- speech
- audio
- FastConformer
- Conformer
- pytorch
- NeMo
- hf-asr-leaderboard
- ctc
license: cc-by-4.0
widget:
- example_title: Librispeech sample 1
  src: https://cdn-media.huggingface.co/speech_samples/sample1.flac
- example_title: Librispeech sample 2
  src: https://cdn-media.huggingface.co/speech_samples/sample2.flac
model-index:
- name: parakeet-ctc-1.1b
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: AMI (Meetings test)
      type: edinburghcstr/ami
      config: ihm
      split: test
      args:
        language: en
    metrics:
    - name: Test WER
      type: wer
      value: 15.62
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Earnings-22
      type: revdotcom/earnings22
      split: test
      args:
        language: en
    metrics:
    - name: Test WER
      type: wer
      value: 13.69
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: GigaSpeech
      type: speechcolab/gigaspeech
      split: test
      args:
        language: en
    metrics:
    - name: Test WER
      type: wer
      value: 10.27
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: LibriSpeech (clean)
      type: librispeech_asr
      config: other
      split: test
      args:
        language: en
    metrics:
    - name: Test WER
      type: wer
      value: 1.83
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: LibriSpeech (other)
      type: librispeech_asr
      config: other
      split: test
      args:
        language: en
    metrics:
    - name: Test WER
      type: wer
      value: 3.54
  - task:
      type: Automatic Speech Recognition
      name: automatic-speech-recognition
    dataset:
      name: SPGI Speech
      type: kensho/spgispeech
      config: test
      split: test
      args:
        language: en
    metrics:
    - name: Test WER
      type: wer
      value: 4.2
  - task:
      type: Automatic Speech Recognition
      name: automatic-speech-recognition
    dataset:
      name: tedlium-v3
      type: LIUM/tedlium
      config: release1
      split: test
      args:
        language: en
    metrics:
    - name: Test WER
      type: wer
      value: 3.54
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Vox Populi
      type: facebook/voxpopuli
      config: en
      split: test
      args:
        language: en
    metrics:
    - name: Test WER
      type: wer
      value: 6.53
  - task:
      type: Automatic Speech Recognition
      name: automatic-speech-recognition
    dataset:
      name: Mozilla Common Voice 9.0
      type: mozilla-foundation/common_voice_9_0
      config: en
      split: test
      args:
        language: en
    metrics:
    - name: Test WER
      type: wer
      value: 9.02
metrics:
- wer
pipeline_tag: automatic-speech-recognition
---

# Parakeet CTC 1.1B (en)

<style>
img {
 display: inline;
}
</style>

[![Model architecture](https://img.shields.io/badge/Model_Arch-FastConformer--CTC-lightgrey#model-badge)](#model-architecture)
| [![Model size](https://img.shields.io/badge/Params-1.1B-lightgrey#model-badge)](#model-architecture)
| [![Language](https://img.shields.io/badge/Language-en-lightgrey#model-badge)](#datasets)


`parakeet-ctc-1.1b` is an ASR model that transcribes speech in lower case English alphabet. This model is jointly developed by [NVIDIA NeMo](https://github.com/NVIDIA/NeMo) and [Suno.ai](https://www.suno.ai/) teams.
It is an XXL version of FastConformer CTC [1] (around 1.1B parameters) model.
See the [model architecture](#model-architecture) section and [NeMo documentation](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/models.html#fast-conformer) for complete architecture details.

## NVIDIA NeMo: Training

To train, fine-tune or play with the model you will need to install [NVIDIA NeMo](https://github.com/NVIDIA/NeMo). We recommend you install it after you've installed latest PyTorch version.
```
pip install nemo_toolkit['all']
``` 

## How to Use this Model

The model is available for use in the NeMo toolkit [3], and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset.

### Automatically instantiate the model

```python
import nemo.collections.asr as nemo_asr
asr_model = nemo_asr.models.EncDecCTCBPEModel.from_pretrained(model_name="nvidia/parakeet-ctc-1.1b")
```

### Transcribing using Python
First, let's get a sample
```
wget https://dldata-public.s3.us-east-2.amazonaws.com/2086-149220-0033.wav
```
Then simply do:
```
asr_model.transcribe(['2086-149220-0033.wav'])
```

### Transcribing many audio files

```shell
python [NEMO_GIT_FOLDER]/examples/asr/transcribe_speech.py 
 pretrained_name="nvidia/parakeet-ctc-1.1b" 
 audio_dir="<DIRECTORY CONTAINING AUDIO FILES>"
```

### Input

This model accepts 16000 Hz mono-channel audio (wav files) as input.

### Output

This model provides transcribed speech as a string for a given audio sample.

## Model Architecture

FastConformer [1] is an optimized version of the Conformer model with 8x depthwise-separable convolutional downsampling. The model is trained using CTC loss. You may find more information on the details of FastConformer here: [Fast-Conformer Model](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/models.html#fast-conformer).

## Training

The NeMo toolkit [3] was used for training the models for over several hundred epochs. These model are trained with this [example script](https://github.com/NVIDIA/NeMo/blob/main/examples/asr/asr_ctc/speech_to_text_ctc_bpe.py) and this [base config](https://github.com/NVIDIA/NeMo/blob/main/examples/asr/conf/fastconformer/fast-conformer_ctc_bpe.yaml).

The tokenizers for these models were built using the text transcripts of the train set with this [script](https://github.com/NVIDIA/NeMo/blob/main/scripts/tokenizers/process_asr_text_tokenizer.py).

### Datasets

The model was trained on 64K hours of English speech collected and prepared by NVIDIA NeMo and Suno teams.

The training dataset consists of private subset with 40K hours of English speech plus 25K hours from the following public datasets:

- Librispeech 960 hours of English speech
- Fisher Corpus
- Switchboard-1 Dataset
- WSJ-0 and WSJ-1
- National Speech Corpus (Part 1, Part 6)
- VCTK
- VoxPopuli (EN)
- Europarl-ASR (EN)
- Multilingual Librispeech (MLS EN) - 2,000 hour subset
- Mozilla Common Voice (v7.0)
- People's Speech  - 12,000 hour subset

## Performance

The performance of Automatic Speech Recognition models is measuring using Word Error Rate. Since this dataset is trained on multiple domains and a much larger corpus, it will generally perform better at transcribing audio in general.

The following tables summarizes the performance of the available models in this collection with the CTC decoder. Performances of the ASR models are reported in terms of Word Error Rate (WER%) with greedy decoding. 

|**Version**|**Tokenizer**|**Vocabulary Size**|**AMI**|**Earnings-22**|**Giga Speech**|**LS test-clean**|**SPGI Speech**|**TEDLIUM-v3**|**Vox Populi**|**Common Voice**|
|---------|-----------------------|-----------------|---------------|---------------|------------|-----------|-----|-------|------|------|
| 1.22.0  | SentencePiece Unigram | 1024 | 15.62 | 13.69 | 10.27 | 1.83 | 3.54 | 4.20 | 3.54 | 6.53 | 9.02 |

These are greedy WER numbers without external LM. More details on evaluation can be found at [HuggingFace ASR Leaderboard](https://huggingface.co/spaces/hf-audio/open_asr_leaderboard)

## NVIDIA Riva: Deployment

[NVIDIA Riva](https://developer.nvidia.com/riva), is an accelerated speech AI SDK deployable on-prem, in all clouds, multi-cloud, hybrid, on edge, and embedded. 
Additionally, Riva provides: 

* World-class out-of-the-box accuracy for the most common languages with model checkpoints trained on proprietary data with hundreds of thousands of GPU-compute hours 
* Best in class accuracy with run-time word boosting (e.g., brand and product names) and customization of acoustic model, language model, and inverse text normalization 
* Streaming speech recognition, Kubernetes compatible scaling, and enterprise-grade support 

Although this model isn’t supported yet by Riva, the [list of supported models is here](https://huggingface.co/models?other=Riva).  
Check out [Riva live demo](https://developer.nvidia.com/riva#demos). 

## References
[1] [Fast Conformer with Linearly Scalable Attention for Efficient Speech Recognition](https://arxiv.org/abs/2305.05084)

[2] [Google Sentencepiece Tokenizer](https://github.com/google/sentencepiece)

[3] [NVIDIA NeMo Toolkit](https://github.com/NVIDIA/NeMo)

[4] [Suno.ai](https://suno.ai/)

[5] [HuggingFace ASR Leaderboard](https://huggingface.co/spaces/hf-audio/open_asr_leaderboard)


## Licence

License to use this model is covered by the [CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/). By downloading the public and release version of the model, you accept the terms and conditions of the [CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/) license.