File size: 7,292 Bytes
9ce31bf
 
 
8baa7cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
# SPDX-FileCopyrightText: Copyright (c) 2024, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0

import os
import sys
import torch
import importlib
import numpy as np
import numpy.typing as npt
import torch.nn as nn
import torch.nn.functional as F
from typing import Dict, List, Tuple, Union
from yolox.boxes import postprocess


def define_model(config_name: str = "graphic_element_v1", verbose: bool = True) -> nn.Module:
    """
    Defines and initializes the model based on the configuration.

    Args:
        config_name (str): Configuration name. Defaults to "graphic_element_v1".
        verbose (bool): Whether to print verbose output. Defaults to True.

    Returns:
        torch.nn.Module: The initialized YOLOX model.
    """
    # Load model from exp_file
    sys.path.append(os.path.dirname(config_name))
    exp_module = importlib.import_module(os.path.basename(config_name).split(".")[0])

    config = exp_module.Exp()
    model = config.get_model()

    # Load weights
    if verbose:
        print(" -> Loading weights from", config.ckpt)

    ckpt = torch.load(config.ckpt, map_location="cpu", weights_only=False)
    model.load_state_dict(ckpt["model"], strict=True)

    model = YoloXWrapper(model, config)
    return model.eval().to(config.device)


def resize_pad(img: torch.Tensor, size: tuple) -> torch.Tensor:
    """
    Resizes and pads an image to a given size.
    The goal is to preserve the aspect ratio of the image.

    Args:
        img (torch.Tensor[C x H x W]): The image to resize and pad.
        size (tuple[2]): The size to resize and pad the image to.

    Returns:
        torch.Tensor: The resized and padded image.
    """
    img = img.float()
    _, h, w = img.shape
    scale = min(size[0] / h, size[1] / w)
    nh = int(h * scale)
    nw = int(w * scale)
    img = F.interpolate(
        img.unsqueeze(0), size=(nh, nw), mode="bilinear", align_corners=False
    ).squeeze(0)
    img = torch.clamp(img, 0, 255)
    pad_b = size[0] - nh
    pad_r = size[1] - nw
    img = F.pad(img, (0, pad_r, 0, pad_b), value=114.0)
    return img


class YoloXWrapper(nn.Module):
    """
    Wrapper for YoloX models.
    """
    def __init__(self, model: nn.Module, config) -> None:
        """
        Constructor

        Args:
            model (torch model): Yolo model.
            config (Config): Config object containing model parameters.
        """
        super().__init__()
        self.model = model
        self.config = config

        # Copy config parameters
        self.device = config.device
        self.img_size = config.size
        self.min_bbox_size = config.min_bbox_size
        self.normalize_boxes = config.normalize_boxes
        self.conf_thresh = config.conf_thresh
        self.iou_thresh = config.iou_thresh
        self.class_agnostic = config.class_agnostic
        self.threshold = config.threshold
        self.labels = config.labels
        self.num_classes = config.num_classes

    def reformat_input(
        self,
        x: torch.Tensor,
        orig_sizes: Union[torch.Tensor, List, Tuple, npt.NDArray]
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        """
        Reformats the input data and original sizes to the correct format.

        Args:
            x (torch.Tensor[BS x C x H x W]): Input image batch.
            orig_sizes (torch.Tensor or list or np.ndarray): Original image sizes.
        Returns:
            torch tensor [BS x C x H x W]: Input image batch.
            torch tensor [BS x 2]: Original image sizes (before resizing and padding).
        """
        # Convert image size to tensor
        if isinstance(orig_sizes, (list, tuple)):
            orig_sizes = np.array(orig_sizes)
        if orig_sizes.shape[-1] == 3:  # remove channel
            orig_sizes = orig_sizes[..., :2]
        if isinstance(orig_sizes, np.ndarray):
            orig_sizes = torch.from_numpy(orig_sizes).to(self.device)

        # Add batch dimension if not present
        if len(x.size()) == 3:
            x = x.unsqueeze(0)
        if len(orig_sizes.size()) == 1:
            orig_sizes = orig_sizes.unsqueeze(0)

        return x, orig_sizes

    def preprocess(self, image: Union[torch.Tensor, npt.NDArray]) -> torch.Tensor:
        """
        YoloX preprocessing function:
        - Resizes to the longest edge to img_size while preserving the aspect ratio
        - Pads the shortest edge to img_size

        Args:
            image (torch tensor or np array [H x W x 3]): Input images in uint8 format.

        Returns:
            torch tensor [3 x H x W]: Processed image.
        """
        if not isinstance(image, torch.Tensor):
            image = torch.from_numpy(image)
        image = image.permute(2, 0, 1)  # [H, W, 3] -> [3, H, W]
        image = resize_pad(image, self.img_size)
        return image.float()

    def forward(
        self,
        x: torch.Tensor,
        orig_sizes: Union[torch.Tensor, List, Tuple, npt.NDArray]
    ) -> List[Dict[str, torch.Tensor]]:
        """
        Forward pass of the model.
        Applies NMS and reformats the predictions.

        Args:
            x (torch.Tensor[BS x C x H x W]): Input image batch.
            orig_sizes (torch.Tensor or list or np.ndarray): Original image sizes.

        Returns:
            list[dict]: List of prediction dictionaries. Each dictionary contains:
                - labels (torch.Tensor[N]): Class labels
                - boxes (torch.Tensor[N x 4]): Bounding boxes
                - scores (torch.Tensor[N]): Confidence scores.
        """
        x, orig_sizes = self.reformat_input(x, orig_sizes)

        # Scale to 0-255 if in range 0-1
        if x.max() <= 1:
            x *= 255

        pred_boxes = self.model(x.to(self.device))

        # NMS
        pred_boxes = postprocess(
            pred_boxes,
            self.config.num_classes,
            self.conf_thresh,
            self.iou_thresh,
            class_agnostic=self.class_agnostic,
        )

        # Reformat output
        preds = []
        for i, (p, size) in enumerate(zip(pred_boxes, orig_sizes)):
            if p is None:  # No detections
                preds.append({
                    "labels": torch.empty(0),
                    "boxes": torch.empty((0, 4)),
                    "scores": torch.empty(0),
                })
                continue

            p = p.view(-1, p.size(-1))
            ratio = min(self.img_size[0] / size[0], self.img_size[1] / size[1])
            boxes = p[:, :4] / ratio

            # Clip
            boxes[:, [0, 2]] = torch.clamp(boxes[:, [0, 2]], 0, size[1])
            boxes[:, [1, 3]] = torch.clamp(boxes[:, [1, 3]], 0, size[0])

            # Remove too small
            kept = (
                (boxes[:, 2] - boxes[:, 0] > self.min_bbox_size) &
                (boxes[:, 3] - boxes[:, 1] > self.min_bbox_size)
            )
            boxes = boxes[kept]
            p = p[kept]

            # Normalize to 0-1
            if self.normalize_boxes:
                boxes[:, [0, 2]] /= size[1]
                boxes[:, [1, 3]] /= size[0]

            scores = p[:, 4] * p[:, 5]
            labels = p[:, 6]

            preds.append({"labels": labels, "boxes": boxes, "scores": scores})

        return preds