File size: 9,053 Bytes
ecd1674 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 |
# Copyright (c) 2024, NVIDIA Corporation & Affiliates. All rights reserved.
#
# This work is made available under the Nvidia Source Code License-NC.
# To view a copy of this license, visit
# https://github.com/NVlabs/QLIP/blob/main/LICENSE
# MIT License
# Based on https://github.com/zhaoyue-zephyrus/bsq-vit/blob/main/transcoder/models/quantizer/bsq.py
import torch
import torch.nn as nn
from einops import rearrange, reduce
_EPS = 1e-8
class DifferentiableEntropyFunction(torch.autograd.Function):
@staticmethod
def forward(ctx, zq, basis, K, eps):
zb = (zq + 1) / 2
zi = ((zb * basis).sum(-1)).to(torch.int64)
cnt = torch.scatter_reduce(
torch.zeros(2**K, device=zq.device, dtype=zq.dtype),
0,
zi.flatten(),
torch.ones_like(zi.flatten()).to(zq.dtype),
"sum",
)
prob = (cnt + eps) / (cnt + eps).sum()
H = torch.special.entr(prob).sum()
ctx.save_for_backward(zq, zi, prob)
ctx.K = K
return H
@staticmethod
def backward(ctx, grad_output):
zq, zi, prob = ctx.saved_tensors
grad_array = -grad_output * (torch.log(prob) + 1) / zi.numel() / ctx.K
reord_grad = grad_array[zi.flatten()].reshape(zi.shape)
grad_input = reord_grad.unsqueeze(-1) * zq
return grad_input, None, None, None, None
def codebook_entropy(zq, basis, K, eps=1e-8):
return DifferentiableEntropyFunction.apply(zq, basis, K, eps)
class BinarySphericalQuantizer(nn.Module):
def __init__(
self,
embed_dim: int = 18,
group_size: int = 9,
soft_entropy: bool = True,
beta: float = 0.0, # commit loss
gamma_0: float = 1.0, # entropy loss (E[H(q)])
gamma_1: float = 1.0, # entropy loss (H[E[q]])
input_format: str = "bchw",
persample_entropy_compute: str = "group",
l2_norm: bool = True,
inv_temperature: float = 100.0,
):
super().__init__()
self.embed_dim = embed_dim
self.group_size = group_size
assert embed_dim % group_size == 0, "embed_dim must be divisible by group_size"
self.soft_entropy = soft_entropy
self.beta = beta
self.gamma_0 = gamma_0
self.gamma_1 = gamma_1
assert input_format in ["bchw", "blc"]
self.input_format = input_format
assert persample_entropy_compute in [
"group",
"analytical",
], "persample_entropy_compute must be either 'group' or 'analytical'"
self.persample_entropy_compute = persample_entropy_compute
self.l2_norm = l2_norm
self.inv_temperature = inv_temperature
self.register_buffer("basis", 2 ** torch.arange(embed_dim - 1, -1, -1), persistent=False)
self.register_buffer(
"group_basis", 2 ** torch.arange(group_size - 1, -1, -1), persistent=False
)
group_codes = torch.arange(2**self.group_size)
group_codebook = self.indexes_to_codes(group_codes).float()[:, -group_size:]
self.register_buffer("group_codebook", group_codebook, persistent=False)
def quantize(self, z):
assert (
z.shape[-1] == self.embed_dim
), f"Expected {self.embed_dim} dimensions, got {z.shape[-1]}"
zhat = torch.where(z > 0, torch.ones_like(z), -torch.ones_like(z))
return z + (zhat - z).detach()
def forward(self, z):
if self.input_format == "bchw":
z = rearrange(z, "b c h w -> b h w c")
zq = self.quantize(z)
indices = self.codes_to_indexes(zq.detach())
group_indices = self.codes_to_group_indexes(zq.detach())
if not self.training:
used_codes = torch.unique(indices, return_counts=False)
else:
used_codes = None
if self.soft_entropy:
persample_entropy, cb_entropy = self.soft_entropy_loss(z)
else:
persample_entropy, cb_entropy = self.hard_entropy_loss(z)
entropy_penalty = self.gamma_0 * persample_entropy - self.gamma_1 * cb_entropy
q_scale = 1.0 / (self.embed_dim**0.5) if self.l2_norm else 1.0
zq = zq * q_scale
commit_loss = self.beta * torch.mean(((zq.detach() - z) ** 2).sum(dim=-1))
if self.input_format == "bchw":
zq = rearrange(zq, "b h w c -> b c h w")
return (
zq,
commit_loss + entropy_penalty / self.inv_temperature,
{
"H": cb_entropy,
"used_codes": used_codes,
"indices": indices,
"group_indices": group_indices,
},
)
def soft_entropy_loss(self, z):
group_codebook = self.group_codebook / (self.embed_dim**0.5 if self.l2_norm else 1)
divided_z = rearrange(z, "... (g c) -> ... g c", c=self.group_size)
if self.persample_entropy_compute == "group":
distance = -2 * torch.einsum("... g c, d c -> ... g d", divided_z, group_codebook)
prob = (-distance * self.inv_temperature).softmax(dim=-1)
persample_entropy = torch.special.entr(prob + _EPS).sum((-1, -2)).mean()
else:
p = torch.sigmoid(
-4 * z / (self.embed_dim**0.5 if self.l2_norm else 1) * self.inv_temperature
)
prob = torch.stack([p, 1 - p], dim=-1)
persample_entropy = torch.special.entr(prob + _EPS).sum((-1, -2)).mean()
# macro average of the probability of each subgroup
avg_prob = reduce(prob, "... g d -> g d", "mean")
cb_entropy = torch.special.entr(avg_prob + _EPS).sum()
return persample_entropy, cb_entropy
def hard_entropy_loss(self, z):
zb = ((z + 1) / 2).reshape(z.shape[0], -1, z.shape[-1]).to(torch.float32)
prob_per_dim = zb.sum(1) / zb.shape[1]
prob = torch.stack([prob_per_dim, 1 - prob_per_dim], dim=-1)
persample_entropy = torch.special.entr(prob + _EPS).sum((-1, -2)).mean()
cb_entropy = codebook_entropy(z, self.basis, self.embed_dim)
return persample_entropy, cb_entropy
def codes_to_indexes(self, zhat):
"""Converts a `code` to an index in the codebook.
Args:
zhat: A tensor of shape (B, ..., C) containing the codes. must be in {-1, 1}
"""
assert (
zhat.shape[-1] == self.embed_dim
), f"Expected {self.embed_dim} dimensions, got {zhat.shape[-1]}"
return ((zhat.int() + 1) / 2 * self.basis).sum(axis=-1).to(torch.int64)
def codes_to_group_indexes(self, zhat):
"""Converts a `code` to a list of indexes (in groups) in the codebook.
Args:
zhat: A tensor of shape (B, ..., C) containing the codes. must be in {-1, 1}
"""
zhat_in_group = rearrange(zhat, "b ... (g c) -> b ... g c", c=self.group_size)
return ((zhat_in_group.int() + 1) / 2 * self.group_basis).sum(axis=-1).to(torch.int64)
def indexes_to_codes(self, indices):
"""Inverse of `codes_to_indexes`."""
indices = indices.unsqueeze(-1)
codes_non_centered = torch.remainder(torch.floor_divide(indices, self.basis), 2)
return codes_non_centered * 2 - 1
def group_indexes_to_codes(self, group_indices):
"""Inverse of `codes_to_group_indexes`."""
group_indices = group_indices.unsqueeze(-1)
codes_non_centered = torch.remainder(torch.floor_divide(group_indices, self.group_basis), 2)
codes_non_centered = rearrange(codes_non_centered, "b ... g c -> b ... (g c)")
return codes_non_centered * 2 - 1
def get_group_codebook_entry(self, group_indices, one_hot=False):
"""
Args:
group_indices: A tensor of shape (B, L, G, C) containing the group indices.
"""
if one_hot:
z_q = group_indices @ self.group_codebook
else:
z_q = self.group_indexes_to_codes(group_indices)
q_scale = 1.0 / (self.embed_dim**0.5) if self.l2_norm else 1.0
z_q = z_q * q_scale
if self.input_format == "bchw":
h, w = int(z_q.shape[1] ** 0.5)
assert h * w == z_q.shape[1], "Invalid sequence length"
z_q = rearrange(z_q, "b (h w) c -> b c h w", h=h)
return z_q
def get_codebook_entry(self, indices, one_hot=False):
"""
Args:
group_indices: A tensor of shape (B, L, C) containing the indices.
"""
if one_hot:
assert self.embed_dim == self.group_size, "one_hot is only supported for group_size == embed_dim"
z_q = indices @ self.group_codebook
else:
z_q = self.indexes_to_codes(indices)
q_scale = 1.0 / (self.embed_dim**0.5) if self.l2_norm else 1.0
z_q = z_q * q_scale
if self.input_format == "bchw":
h, w = int(z_q.shape[1] ** 0.5)
assert h * w == z_q.shape[1], "Invalid sequence length"
z_q = rearrange(z_q, "b (h w) c -> b c h w", h=h)
return z_q
|