File size: 17,377 Bytes
0e2e85d
 
 
 
b942c1e
0e2e85d
 
 
 
 
 
9cf8c9e
0e2e85d
 
2cebe7f
 
 
 
 
32d8bf4
0e2e85d
32d8bf4
 
 
 
 
 
 
0e2e85d
ebd553d
 
32d8bf4
 
 
0e2e85d
32d8bf4
 
0e2e85d
 
 
 
 
 
 
 
732e074
 
0e2e85d
 
 
 
 
 
 
 
 
 
 
 
 
732e074
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e2e85d
 
32d8bf4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e2e85d
 
b988ade
 
 
 
 
0e2e85d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a57d92
0e2e85d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a57d92
0e2e85d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32d8bf4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e2e85d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1171108
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
---
license: cc-by-nc-4.0
language:
- en
pipeline_tag: image-text-to-text
tags:
- nvidia
- NVLM
- pytorch
- multimodal
- conversational
library_name: transformers
---

<p align="center">
  <img src="nvlm-logo-light.png" alt="Image Description" width="300" >
</p>


# Model Overview

## Description
This family of models performs vision-language and text-only tasks including optical character recognition, multimodal reasoning, localization, common sense reasoning, world knowledge utilization, and coding.

## License/Terms of Use
[Creative Commons Attribution: Non-Commercial 4.0 International](https://spdx.org/licenses/CC-BY-NC-4.0) <br>

# Model Details

Today (September 17th, 2024), we introduce [NVLM 1.0](https://arxiv.org/abs/2409.11402), a family of frontier-class multimodal large language models (LLMs) that achieve state-of-the-art results on vision-language tasks, rivaling the leading proprietary models (e.g., GPT-4o) and open-access models (e.g., Llama 3-V 405B and InternVL 2). Remarkably, NVLM 1.0 shows improved text-only performance over its LLM backbone after multimodal training. 

In this repo, we are open-sourcing NVLM-1.0-D-72B (decoder-only architecture), the decoder-only model weights and code for the community.



## Reference(s)
[Paper](https://arxiv.org/abs/2409.11402) &ensp; [Inference Code (HF)](https://huggingface.co/nvidia/NVLM-D-72B/tree/main) &ensp; [Training Code (Coming soon)]() &ensp; [Website](https://research.nvidia.com/labs/adlr/NVLM-1/) 

## Benchmark Results
We train our model with legacy [Megatron-LM](https://github.com/NVIDIA/Megatron-LM/tree/main/megatron/legacy) and adapt the codebase to Huggingface for model hosting, reproducibility, and inference.
We observe numerical differences between the Megatron and Huggingface codebases, which are within the expected range of variation. 
We provide the results from both the Huggingface codebase and the Megatron codebase for reproducibility and comparison with other models.

Results (as of September 17th, 2024) in the multimodal benchmarks are as follows:

### Vision-language Benchmarks 

| Benchmark                    | MMMU (val / test) | MathVista | OCRBench | AI2D | ChartQA | DocVQA | TextVQA | RealWorldQA | VQAv2 |
|------------------------------|-------------------|-----------|----------|------|---------|--------|---------|-------------|-------|
| NVLM-D 1.0 72B (Huggingface) | 58.7 / 54.9       | 65.2      | 852      | 94.2 | 86.0    | 92.6   | 82.6    | 69.5        | 85.4  |
| NVLM-D 1.0 72B (Megatron)    | 59.7 / 54.6       | 65.2      | 853      | 94.2 | 86.0    | 92.6   | 82.1    | 69.7        | 85.4  |
| Llama 3.2 90B                | 60.3 / -          | 57.3      | -        | 92.3 | 85.5    | 90.1   | -       | -           | 78.1  |
| Llama 3-V 70B                | 60.6 / -          | -         | -        | 93.0 | 83.2    | 92.2   | 83.4    | -           | 79.1  |
| Llama 3-V 405B               | 64.5 / -          | -         | -        | 94.1 | 85.8    | 92.6   | 84.8    | -           | 80.2  |
| InternVL2-Llama3-76B         | 55.2 / -          | 65.5      | 839      | 94.8 | 88.4    | 94.1   | 84.4    | 72.2        | -     |
| GPT-4V                       | 56.8 / 55.7       | 49.9      | 645      | 78.2 | 78.5    | 88.4   | 78.0    | 61.4        | 77.2  |
| GPT-4o                       | 69.1 / -          | 63.8      | 736      | 94.2 | 85.7    | 92.8   | -       | -           | -     |
| Claude 3.5 Sonnet            | 68.3 / -          | 67.7      | 788      | 94.7 | 90.8    | 95.2   | -       | -           | -     |
| Gemini 1.5 Pro (Aug 2024)    | 62.2 / -          | 63.9      | 754      | 94.4 | 87.2    | 93.1   | 78.7    | 70.4        | 80.2  |

### Text-only Benchmarks

| Tasks                        | Backbone LLM | MMLU | GSM8K | MATH | HumanEval | Avg. Accuracy    |
|------------------------------|--------------|------|-------|------|-----------|------------------|
| **Proprietary**              |              |      |       |      |           |                  |
| GPT-4.0                      | N/A          | 88.7 | -     | 76.6 | 90.2      | -                |
| Gemini Pro 1.5 (Aug 2024)    | N/A          | 85.9 | 90.8  | 67.7 | 84.1      | 82.1             |
| Claude 3.5 Sonnet            | N/A          | 88.7 | 96.4  | 71.1 | 92.0      | 87.0             |
| **Open LLM**                 |              |      |       |      |           |                  |
| (a) Nous-Hermes-2-Yi-34B     | N/A          | 75.5 | 78.6  | 21.8 | 43.3      | 54.8             |
| (b) Qwen-72B-Instruct        | N/A          | 82.3 | 91.1  | 59.7 | 86.0      | 79.8             |
| (c) Llama-3-70B-Instruct     | N/A          | 82.0 | 93.0  | 51.0 | 81.7      | 76.6             |
| (d) Llama-3.1-70B-Instruct   | N/A          | 83.6 | 95.1  | 68.0 | 80.5      | 81.8             |
| (e) Llama-3.1-405B-Instruct  | N/A          | 87.3 | 96.8  | 73.8 | 89.0      | 86.7             |
| **Open Multimodal LLM**      |              |      |       |      |           |                  |
| VILA-1.5 40B                 | (a)          | 73.3 | 67.5  | 16.8 | 34.1      | 🥶 47.9   (-6.9) |
| LLaVA-OneVision 72B          | (b)          | 80.6 | 89.9  | 49.2 | 74.4      | 🥶 73.5   (-6.3) |
| InternVL-2-Llama3-76B        | (c)          | 78.5 | 87.1  | 42.5 | 71.3      | 🥶 69.9   (-6.7) |
| *Llama 3-V 70B               | (d)          | 83.6 | 95.1  | 68.0 | 80.5      | 🙂 81.8   (0)    |
| *Llama 3-V 405B              | (e)          | 87.3 | 96.8  | 73.8 | 89.0      | 🙂 86.7   (0)    |
| NVLM-D 1.0 72B (Megatron)    | (b)          | 82.0 | 92.9  | 73.1 | 88.4      | 🥳 84.1   (+4.3) |
| NVLM-D 1.0 72B (Huggingface) | (b)          | 81.7 | 93.2  | 73.1 | 89.0      | 🥳 84.3   (+4.5) |


## Model Architectures

**Network Architecture:** Decoder-Only Transformer 

### Input
**Input Type(s):** Text, Image <br>
**Input Format(s):** String, [Pillow Library-Supported Formats](https://pillow.readthedocs.io/en/stable/handbook/image-file-formats.html) <br>
**Input Dimensions:** One-Dimensional (1D), Two Dimensional (2D) <br>
**Other Properties Related to Input:** Maximum Token Length = 128K Tokens <br>

### Output
**Output Type(s):** Text <br>
**Output Format:** String <br>
**Model Output:** 1D <br>
**Other Properties Related to Output:** None <br> 

## How to use

When converting Megatron checkpoint to Huggingface, we adapt [InternVL codebase](https://huggingface.co/OpenGVLab/InternVL2-Llama3-76B) to support model loading and multi-GPU inference in HF. 
We also use the tokenizer from [Qwen2.5-72B-Instruct](https://huggingface.co/Qwen/Qwen2.5-72B-Instruct/tree/main) when adapting the tokenizer to Huggingface, as it contains extra special tokens for vision tasks, e.g., `<|vision_pad|>`. 
We train NVLM-1.0-D-72B based on the [Qwen2-72B-Instruct](https://huggingface.co/Qwen/Qwen2-72B-Instruct/tree/main) text-only model and [InternViT-6B-448px-V1-5](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V1-5) ViT model with our large-scale high-quality multimodal dataset. 
For training code, please refer to [Megatron-LM (Coming soon)]().


### Prepare the environment

We provide a docker build file in the [Dockerfile](Dockerfile) for reproduction. 

The docker image is based on `nvcr.io/nvidia/pytorch:23.09-py3`. 

*Note: We observe that different transformer versions / CUDA versions / docker versions can lead to slight benchmark number differences. We recommend using the Dockerfile above for precise reproduction.*

### Model loading

```python
import torch
from transformers import AutoModel

path = "nvidia/NVLM-D-72B"
model = AutoModel.from_pretrained(
    path,
    torch_dtype=torch.bfloat16,
    low_cpu_mem_usage=True,
    use_flash_attn=False,
    trust_remote_code=True).eval()
```

### Multiple GPUs

The model can be loaded on multiple GPUs as follows:

```python
import torch
import math
from transformers import AutoModel

def split_model():
    device_map = {}
    world_size = torch.cuda.device_count()
    num_layers = 80
    # Since the first GPU will be used for ViT, treat it as half a GPU.
    num_layers_per_gpu = math.ceil(num_layers / (world_size - 0.5))
    num_layers_per_gpu = [num_layers_per_gpu] * world_size
    num_layers_per_gpu[0] = math.ceil(num_layers_per_gpu[0] * 0.5)
    layer_cnt = 0
    for i, num_layer in enumerate(num_layers_per_gpu):
        for j in range(num_layer):
            device_map[f'language_model.model.layers.{layer_cnt}'] = i
            layer_cnt += 1
    device_map['vision_model'] = 0
    device_map['mlp1'] = 0
    device_map['language_model.model.tok_embeddings'] = 0
    device_map['language_model.model.embed_tokens'] = 0
    device_map['language_model.output'] = 0
    device_map['language_model.model.norm'] = 0
    device_map['language_model.lm_head'] = 0
    device_map['language_model.model.rotary_emb'] = 0
    device_map[f'language_model.model.layers.{num_layers - 1}'] = 0

    return device_map

path = "nvidia/NVLM-D-72B"
device_map = split_model()
model = AutoModel.from_pretrained(
    path,
    torch_dtype=torch.bfloat16,
    low_cpu_mem_usage=True,
    use_flash_attn=False,
    trust_remote_code=True,
    device_map=device_map).eval()
```


### Inference

```python
import torch
from transformers import AutoTokenizer, AutoModel
import math
from PIL import Image
import torchvision.transforms as T
from torchvision.transforms.functional import InterpolationMode


def split_model():
    device_map = {}
    world_size = torch.cuda.device_count()
    num_layers = 80
    # Since the first GPU will be used for ViT, treat it as half a GPU.
    num_layers_per_gpu = math.ceil(num_layers / (world_size - 0.5))
    num_layers_per_gpu = [num_layers_per_gpu] * world_size
    num_layers_per_gpu[0] = math.ceil(num_layers_per_gpu[0] * 0.5)
    layer_cnt = 0
    for i, num_layer in enumerate(num_layers_per_gpu):
        for j in range(num_layer):
            device_map[f'language_model.model.layers.{layer_cnt}'] = i
            layer_cnt += 1
    device_map['vision_model'] = 0
    device_map['mlp1'] = 0
    device_map['language_model.model.tok_embeddings'] = 0
    device_map['language_model.model.embed_tokens'] = 0
    device_map['language_model.output'] = 0
    device_map['language_model.model.norm'] = 0
    device_map['language_model.lm_head'] = 0
    device_map['language_model.model.rotary_emb'] = 0
    device_map[f'language_model.model.layers.{num_layers - 1}'] = 0

    return device_map


IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)


def build_transform(input_size):
    MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
    transform = T.Compose([
        T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
        T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
        T.ToTensor(),
        T.Normalize(mean=MEAN, std=STD)
    ])
    return transform


def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
    best_ratio_diff = float('inf')
    best_ratio = (1, 1)
    area = width * height
    for ratio in target_ratios:
        target_aspect_ratio = ratio[0] / ratio[1]
        ratio_diff = abs(aspect_ratio - target_aspect_ratio)
        if ratio_diff < best_ratio_diff:
            best_ratio_diff = ratio_diff
            best_ratio = ratio
        elif ratio_diff == best_ratio_diff:
            if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
                best_ratio = ratio
    return best_ratio


def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
    orig_width, orig_height = image.size
    aspect_ratio = orig_width / orig_height

    # calculate the existing image aspect ratio
    target_ratios = set(
        (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
        i * j <= max_num and i * j >= min_num)
    target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])

    # find the closest aspect ratio to the target
    target_aspect_ratio = find_closest_aspect_ratio(
        aspect_ratio, target_ratios, orig_width, orig_height, image_size)

    # calculate the target width and height
    target_width = image_size * target_aspect_ratio[0]
    target_height = image_size * target_aspect_ratio[1]
    blocks = target_aspect_ratio[0] * target_aspect_ratio[1]

    # resize the image
    resized_img = image.resize((target_width, target_height))
    processed_images = []
    for i in range(blocks):
        box = (
            (i % (target_width // image_size)) * image_size,
            (i // (target_width // image_size)) * image_size,
            ((i % (target_width // image_size)) + 1) * image_size,
            ((i // (target_width // image_size)) + 1) * image_size
        )
        # split the image
        split_img = resized_img.crop(box)
        processed_images.append(split_img)
    assert len(processed_images) == blocks
    if use_thumbnail and len(processed_images) != 1:
        thumbnail_img = image.resize((image_size, image_size))
        processed_images.append(thumbnail_img)
    return processed_images


def load_image(image_file, input_size=448, max_num=12):
    image = Image.open(image_file).convert('RGB')
    transform = build_transform(input_size=input_size)
    images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
    pixel_values = [transform(image) for image in images]
    pixel_values = torch.stack(pixel_values)
    return pixel_values

path = "nvidia/NVLM-D-72B"
device_map = split_model()
model = AutoModel.from_pretrained(
    path,
    torch_dtype=torch.bfloat16,
    low_cpu_mem_usage=True,
    use_flash_attn=False,
    trust_remote_code=True,
    device_map=device_map).eval()

print(model)

tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)
generation_config = dict(max_new_tokens=1024, do_sample=False)

# pure-text conversation
question = 'Hello, who are you?'
response, history = model.chat(tokenizer, None, question, generation_config, history=None, return_history=True)
print(f'User: {question}\nAssistant: {response}')

# single-image single-round conversation
pixel_values = load_image('path/to/your/example/image.jpg', max_num=6).to(
    torch.bfloat16)
question = '<image>\nPlease describe the image shortly.'
response = model.chat(tokenizer, pixel_values, question, generation_config)
print(f'User: {question}\nAssistant: {response}')
```

## Software Integration
**Runtime Engine(s)** 
* PyTorch <br>

**Supported Hardware Microarchitecture Compatibility:** <br>
* NVIDIA Hopper <br>

**[Preferred/Supported] Operating System(s):** <br>
* Linux <br>

## Inference
**Engine:** PyTorch <br>
**Test Hardware:** <br>
* H100 <br>

## Model Version(s)
* v1.0-D (NVLM-D)

## Training, Testing, and Evaluation Datasets 

### Pre-Training Dataset

**Link** <br>
* [See Table 4](https://arxiv.org/abs/2409.11402) <br>

**Data Collection Method by dataset** <br>
* Hybrid: Automated, Human, Synthetic, Unknown <br>

**Labeling Method by dataset** <br>
* Hybrid: Automated, Human, Synthetic, Unknown <br>

**Properties** 
* Trained on image captions, image-text pairs, natural images, charts, documents, scene descriptions, and mathematical reasoning. <br>

### Supervised Fine-Tuning Dataset
**Link** <br>
* [See Table 6](https://arxiv.org/abs/2409.11402) <br>

**Data Collection Method by dataset** <br>
* Hybrid: Automated, Human, Synthetic, Unknown <br>

**Labeling Method by dataset** <br>
* Hybrid: Automated, Human, Synthetic, Unknown <br>

**Properties** 
* Trained on image captions; general knowledge; image-text pairs; natural images; charts; diagrams; documents; scene descriptions; science diagrams, lessons, textbook data, and question-answer pairs; visual instruction tuning; and mathematical reasoning. <br>

### Evaluation Dataset
**Link** <br>
* [See Section 6.1, "Benchmark"](https://arxiv.org/abs/2409.11402) <br>

**Data collection method by dataset** <br>
* Human <br>

**Labeling method by dataset** <br>
* Human <br>

**Properties** <br>
* Evaluated on general knowledge, visual answering, chart understanding, table, optical character recognition, and mathematical reasoning. <br> 


## Correspondence to
Wenliang Dai* (wdai@nvidia.com), Nayeon Lee* (nayeonl@nvidia.com), Boxin Wang* (boxinw@nvidia.com), Zhuolin Yang* (zhuoliny@nvidia.com), Wei Ping* (wping@nvidia.com)

*Equal contribution

## Citation
<pre>
@article{nvlm2024,
  title={NVLM: Open Frontier-Class Multimodal LLMs},
  author={Dai, Wenliang and Lee, Nayeon and Wang, Boxin and Yang, Zhuolin and Liu, Zihan and Barker, Jon and Rintamaki, Tuomas and Shoeybi, Mohammad and Catanzaro, Bryan and Ping, Wei},
  journal={arXiv preprint},
  year={2024}}
</pre>


## Ethical Considerations
NVIDIA believes Trustworthy AI is a shared responsibility and we have established policies and practices to enable development for a wide array of AI applications.  When downloaded or used in accordance with our terms of service, developers should work with their internal model team to ensure this model meets requirements for the relevant industry and use case and addresses unforeseen product misuse.    

Please report security vulnerabilities or NVIDIA AI Concerns [here](https://www.nvidia.com/en-us/support/submit-security-vulnerability/).