File size: 6,716 Bytes
1b438fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185

(venv2) D:\modelopt-windows-scripts\ONNX_PTQ>python D:\opset21_patrice.py --onnx_path="D:\GenAI\models\FP16_Mistral-Nemo-Instruct-2407_ONNX\model.onnx" --output_path="D:\GenAI\models\FP16_Mistral-Nemo-Instruct-2407_ONNX\opset_21\model.onnx"
Printing opset info of given input model...

Domain:
  Version: 14

Domain: com.microsoft
  Version: 1

Printing opset info of output model...

Domain:
  Version: 21

Domain: com.microsoft
  Version: 1


(venv2) D:\modelopt-windows-scripts\ONNX_PTQ>python quantize_script.py --model_name=mistralai/Mistral-Nemo-Instruct-2407  --onnx_path=D:\GenAI\models\FP16_Mistral-Nemo-Instruct-2407_ONNX\opset_21\model.onnx --output_path="D:\GenAI\models\FP16_Mistral-Nemo-Instruct-2407_ONNX\opset_21\default_quant_cuda_ep_calib\model.onnx" --calibration_eps=cuda

--Quantize-Script-- algo=awq_lite, dataset=cnn, calib_size=32, batch_size=1, block_size=128, add-position-ids=True, past-kv=True, rcalib=False, device=cpu, use_zero_point=False



--Quantize-Script-- awqlite_alpha_step=0.1, awqlite_fuse_nodes=False, awqlite_run_per_subgraph=False, awqclip_alpha_step=0.05, awqclip_alpha_min=0.5, awqclip_bsz_col=1024, calibration_eps=['cuda']

D:\venv2\Lib\site-packages\transformers\models\auto\configuration_auto.py:1002: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
  warnings.warn(
D:\venv2\Lib\site-packages\transformers\models\auto\tokenization_auto.py:809: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
  warnings.warn(

--Quantize-Script-- number_of_batched_samples=32, batch-input-ids-list-len=32, batched_attention_mask=32


--Quantize-Script-- number of batched inputs = 32

INFO:root:
Quantizing the model....

INFO:root:Quantization Mode: int4
INFO:root:Finding quantizable weights and augmenting graph output with input activations
INFO:root:Augmenting took 0.031656503677368164 seconds
INFO:root:Saving the model took 60.20284128189087 seconds
2024-11-05 22:37:34.5783341 [W:onnxruntime:, transformer_memcpy.cc:74 onnxruntime::MemcpyTransformer::ApplyImpl] 11 Memcpy nodes are added to the graph main_graph for CUDAExecutionProvider. It might have negative impact on performance (including unable to run CUDA graph). Set session_options.log_severity_level=1 to see the detail logs before this message.
2024-11-05 22:37:34.5949880 [W:onnxruntime:, session_state.cc:1168 onnxruntime::VerifyEachNodeIsAssignedToAnEp] Some nodes were not assigned to the preferred execution providers which may or may not have an negative impact on performance. e.g. ORT explicitly assigns shape related ops to CPU to improve perf.
2024-11-05 22:37:34.6026375 [W:onnxruntime:, session_state.cc:1170 onnxruntime::VerifyEachNodeIsAssignedToAnEp] Rerunning with verbose output on a non-minimal build will show node assignments.
Getting activation names maps...: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 280/280 [00:00<?, ?it/s]
Running AWQ scale search per node...: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 280/280 [17:50<00:00,  3.82s/it]
INFO:root:AWQ scale search took 1070.4731740951538 seconds
Quantizing the weights...: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 280/280 [00:15<00:00, 17.78it/s]
INFO:root:Quantizing actual weights took 15.744078636169434 seconds
INFO:root:Inserting DQ nodes and input_pre_quant_scale node using quantized weights and scales ...
INFO:root:Inserting nodes took 0.17318105697631836 seconds
INFO:root:Exporting the quantized graph ...
Loading extension modelopt_round_and_pack_ext...

INFO:root:Exporting took 59.45134162902832 seconds
INFO:root:
Quantization process took 1223.9775414466858 seconds
INFO:root:Saving to D:\GenAI\models\FP16_Mistral-Nemo-Instruct-2407_ONNX\opset_21\default_quant_cuda_ep_calib\model.onnx took 9.476586818695068 seconds

Done


(venv2) D:\modelopt-windows-scripts\ONNX_PTQ>pip list
Package              Version
-------------------- -------------------------
aiohappyeyeballs     2.4.3
aiohttp              3.10.10
aiosignal            1.3.1
annotated-types      0.7.0
attrs                24.2.0
certifi              2024.8.30
charset-normalizer   3.4.0
cloudpickle          3.1.0
colorama             0.4.6
coloredlogs          15.0.1
cppimport            22.8.2
cupy-cuda12x         13.3.0
datasets             3.1.0
dill                 0.3.8
fastrlock            0.8.2
filelock             3.16.1
flatbuffers          24.3.25
frozenlist           1.5.0
fsspec               2024.9.0
huggingface-hub      0.26.2
humanfriendly        10.0
idna                 3.10
Jinja2               3.1.4
Mako                 1.3.6
markdown-it-py       3.0.0
MarkupSafe           3.0.2
mdurl                0.1.2
mpmath               1.3.0
multidict            6.1.0
multiprocess         0.70.16
networkx             3.4.2
ninja                1.11.1.1
numpy                1.26.4
nvidia-modelopt      0.20.1.dev20+g299b7f8a098
onnx                 1.16.0
onnx-graphsurgeon    0.5.2
onnxconverter-common 1.14.0
onnxmltools          1.12.0
onnxruntime-gpu      1.20.0
packaging            24.1
pandas               2.2.3
pip                  24.0
propcache            0.2.0
protobuf             3.20.2
pyarrow              18.0.0
pybind11             2.13.6
pydantic             2.9.2
pydantic_core        2.23.4
Pygments             2.18.0
pyreadline3          3.5.4
python-dateutil      2.9.0.post0
pytz                 2024.2
PyYAML               6.0.2
regex                2024.9.11
requests             2.32.3
rich                 13.9.4
safetensors          0.4.5
scipy                1.14.1
setuptools           65.5.0
six                  1.16.0
sympy                1.13.3
tokenizers           0.20.2
torch                2.4.0
tqdm                 4.66.6
transformers         4.46.1
typing_extensions    4.12.2
tzdata               2024.2
urllib3              2.2.3
xxhash               3.5.0
yarl                 1.17.1

[notice] A new release of pip is available: 24.0 -> 24.3.1
[notice] To update, run: python.exe -m pip install --upgrade pip

(venv2) D:\modelopt-windows-scripts\ONNX_PTQ>