cassanof's picture
Update README.md
1b72ffa
|
raw
history blame
2.8 kB
metadata
license: bigscience-openrail-m
datasets:
  - nuprl/MultiPL-T
metrics:
  - code_eval
library_name: transformers
tags:
  - code
  - gpt_bigcode
model-index:
  - name: MultiPLCoder-1b-Lua
    results:
      - task:
          type: text-generation
        dataset:
          type: nuprl/MultiPL-E
          name: MultiPL-HumanEval (Lua)
        metrics:
          - name: pass@1
            type: pass@1
            value: 0.173
            verified: true
  - name: MultiPLCoder-1b-Racket
    results:
      - task:
          type: text-generation
        dataset:
          type: nuprl/MultiPL-E
          name: MultiPL-HumanEval (Racket)
        metrics:
          - name: pass@1
            type: pass@1
            value: 0.113
            verified: true
  - name: MultiPLCoder-1b-OCaml
    results:
      - task:
          type: text-generation
        dataset:
          type: nuprl/MultiPL-E
          name: MultiPL-HumanEval (OCaml)
        metrics:
          - name: pass@1
            type: pass@1
            value: 0.097
            verified: true

MultiPLCoder-1b

1 billion parameter version of MultiPLCoder, a set of StarCoder-based models finetuned on the MultiPL-T dataset. These models are state-of-the-art at low-resource languages, such as: Lua, Racket, and OCaml.

This 1 billion parameter model is small enough such that it can generate code on the CPU. For a larger, more capable model, check out MultiPLCoder-15b.

Language Revision Index

This is the revision index for the best-performing models for their respective langauge.

Langauge Revision ID Epoch
Lua 7e96d931547e342ad0661cdd91236fe4ccf52545 3
Racket 2cdc541bee1db4da80c0b43384b0d6a0cacca5b2 5
OCaml e8a24f9e2149cbda8c3cca264a53c2b361b7a031 6

Usage

To utilize one of the models in this repository, you must first select a commit revision for that model from the table above. For example, to use the Lua model:

from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("nuprl/MultiPLCoder-1b")
lua_revision="7e96d931547e342ad0661cdd91236fe4ccf52545"
model = AutoModelForCausalLM.from_pretrained("nuprl/MultiPLCoder-1b", revision=lua_revision)

Note that the model's default configuration does not enable caching, therefore you must specify to use the cache on generation.

toks = tokenizer.encode("-- Hello World", return_tensors="pt")
out = model.generate(toks, use_cache=True,  do_sample=True, temperature=0.2, top_p=0.95, max_length=50)
print(tokenizer.decode(out[0], skip_special_tokens=True))
-- Hello World!
-- :param name: The name of the person to say hello to
-- :return: A greeting
local function say_hello(name)
  return "Hello ".. name
end