File size: 1,978 Bytes
a1be16b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
command:
  - python3
  - ${program}
  - --do_train
  - --do_eval
  - --use_scan
  - --gradient_checkpointing
  - --overwrite_output_dir
  - --predict_with_generate
  - --freeze_encoder
  - --streaming
  - --use_auth_token
  - --compilation_cache
  - --return_timestamps
  - ${args}
method: grid
metric:
  goal: minimize
  name: eval/wer
parameters:
  model_name_or_path:
    value: distil-whisper/large-32-2
  teacher_model_name_or_path:
    value: openai/whisper-large-v2
  train_dataset_name:
    value: librispeech_asr-timestamped+librispeech_asr-timestamped+librispeech_asr-timestamped+common_voice_13_0-timestamped+voxpopuli-timestamped+ami-ihm-timestamped+ami-sdm-timestamped+peoples_speech-clean-timestamped+tedlium-timestamped+switchboard-data+gigaspeech-l-timestamped+spgispeech-timestamped
  train_dataset_config_name:
    value: all+all+all+en+en+ihm+sdm+clean+release3+all+l+L
  train_split_name:
    value: train.clean.100+train.clean.360+train.other.500+train+train+train+train+train+train+train+train+train
  train_dataset_samples:
    value: 2.9+10.4+14.9+89+18.2+10.9+10.9+288+26.8+371.2+226.6+192.7
  timestamp_probability:
    values:
      - 0.0
      - 0.2
      - 0.4
      - 0.6
      - 0.8
      - 1.0
  round_timestamps:
    values:
      - True
      - False
  eval_dataset_name:
    value: "distil-whisper/gigaspeech-l"
  eval_dataset_config_name:
    value: "l"
  cache_dir:
    value: /home/sanchitgandhi/.cache
  dataset_cache_dir:
    value: /home/sanchitgandhi/.cache
  output_dir:
    value: ./
  per_device_train_batch_size:
    value: 64
  dtype:
    value: bfloat16
  learning_rate:
    value: 1e-4
  lr_scheduler_type:
    value: constant_with_warmup
  warmup_steps:
    value: 50
  max_steps:
    value: 2500
  save_steps:
    value: 2501  # don't save checkpoints during sweep
  dataloader_num_workers:
    value: 48
  logging_steps:
    value: 25
  wer_threshold:
    value: 10
program: run_distillation.py
project: distil-whisper-sweeps