File size: 1,906 Bytes
d7a3682 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
---
language:
- hre
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
datasets:
- ntviet/hre-audio-dataset3
metrics:
- wer
model-index:
- name: Whisper Small for Hre - NT Viet
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Hre audio dataset 3
type: ntviet/hre-audio-dataset3
config: default
split: test
args: default
metrics:
- name: Wer
type: wer
value: 50.91027308192457
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Small for Hre - NT Viet
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Hre audio dataset 3 dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2846
- Wer Ortho: 60.4439
- Wer: 50.9103
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_steps: 50
- training_steps: 500
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:-------:|
| 0.0416 | 5.32 | 500 | 1.2846 | 60.4439 | 50.9103 |
### Framework versions
- Transformers 4.38.2
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
|