ntnxx2's picture
End of training
5d2c7bd verified
metadata
library_name: transformers
license: apache-2.0
base_model: google/vit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: vit-base-patch16-224-finetuned-Visual-Emotional
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.65

vit-base-patch16-224-finetuned-Visual-Emotional

This model is a fine-tuned version of google/vit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0819
  • Accuracy: 0.65

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 32

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.8696 5 2.1918 0.1125
2.1428 1.9130 11 2.1017 0.1625
2.1428 2.9565 17 1.9293 0.1875
1.8582 4.0 23 1.7163 0.325
1.8582 4.8696 28 1.5777 0.375
1.4818 5.9130 34 1.4303 0.45
1.1661 6.9565 40 1.3146 0.475
1.1661 8.0 46 1.2160 0.525
0.9421 8.8696 51 1.2096 0.55
0.9421 9.9130 57 1.1362 0.5875
0.8003 10.9565 63 1.1598 0.525
0.8003 12.0 69 1.0878 0.6
0.678 12.8696 74 1.0940 0.6375
0.5888 13.9130 80 1.0819 0.65
0.5888 14.9565 86 1.0700 0.625
0.5086 16.0 92 1.0758 0.625
0.5086 16.8696 97 1.0804 0.625
0.4454 17.9130 103 1.0704 0.6
0.4454 18.9565 109 1.1111 0.575
0.3758 20.0 115 1.0619 0.5875
0.3402 20.8696 120 1.0846 0.6125
0.3402 21.9130 126 1.1042 0.6125
0.3247 22.9565 132 1.0926 0.6375
0.3247 24.0 138 1.0908 0.625
0.3142 24.8696 143 1.0964 0.6
0.3142 25.9130 149 1.0999 0.6125
0.3081 26.9565 155 1.1036 0.625
0.276 27.8261 160 1.1019 0.625

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.5.0+cu121
  • Datasets 3.0.2
  • Tokenizers 0.19.1