metadata
library_name: transformers
license: apache-2.0
base_model: google/vit-base-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: vit-base-patch16-224-finetuned-Visual-Emotional
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.65
vit-base-patch16-224-finetuned-Visual-Emotional
This model is a fine-tuned version of google/vit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 1.0819
- Accuracy: 0.65
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 32
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 0.8696 | 5 | 2.1918 | 0.1125 |
2.1428 | 1.9130 | 11 | 2.1017 | 0.1625 |
2.1428 | 2.9565 | 17 | 1.9293 | 0.1875 |
1.8582 | 4.0 | 23 | 1.7163 | 0.325 |
1.8582 | 4.8696 | 28 | 1.5777 | 0.375 |
1.4818 | 5.9130 | 34 | 1.4303 | 0.45 |
1.1661 | 6.9565 | 40 | 1.3146 | 0.475 |
1.1661 | 8.0 | 46 | 1.2160 | 0.525 |
0.9421 | 8.8696 | 51 | 1.2096 | 0.55 |
0.9421 | 9.9130 | 57 | 1.1362 | 0.5875 |
0.8003 | 10.9565 | 63 | 1.1598 | 0.525 |
0.8003 | 12.0 | 69 | 1.0878 | 0.6 |
0.678 | 12.8696 | 74 | 1.0940 | 0.6375 |
0.5888 | 13.9130 | 80 | 1.0819 | 0.65 |
0.5888 | 14.9565 | 86 | 1.0700 | 0.625 |
0.5086 | 16.0 | 92 | 1.0758 | 0.625 |
0.5086 | 16.8696 | 97 | 1.0804 | 0.625 |
0.4454 | 17.9130 | 103 | 1.0704 | 0.6 |
0.4454 | 18.9565 | 109 | 1.1111 | 0.575 |
0.3758 | 20.0 | 115 | 1.0619 | 0.5875 |
0.3402 | 20.8696 | 120 | 1.0846 | 0.6125 |
0.3402 | 21.9130 | 126 | 1.1042 | 0.6125 |
0.3247 | 22.9565 | 132 | 1.0926 | 0.6375 |
0.3247 | 24.0 | 138 | 1.0908 | 0.625 |
0.3142 | 24.8696 | 143 | 1.0964 | 0.6 |
0.3142 | 25.9130 | 149 | 1.0999 | 0.6125 |
0.3081 | 26.9565 | 155 | 1.1036 | 0.625 |
0.276 | 27.8261 | 160 | 1.1019 | 0.625 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.5.0+cu121
- Datasets 3.0.2
- Tokenizers 0.19.1