File size: 2,243 Bytes
351b0a4
 
f64eb2b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
351b0a4
 
f64eb2b
 
351b0a4
f64eb2b
351b0a4
f64eb2b
 
 
 
 
351b0a4
f64eb2b
351b0a4
f64eb2b
351b0a4
f64eb2b
351b0a4
f64eb2b
351b0a4
f64eb2b
351b0a4
f64eb2b
351b0a4
f64eb2b
351b0a4
f64eb2b
351b0a4
f64eb2b
 
 
 
 
 
 
 
351b0a4
f64eb2b
351b0a4
f64eb2b
 
 
 
 
 
 
351b0a4
 
f64eb2b
351b0a4
f64eb2b
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
---
library_name: transformers
language:
- en
license: mit
base_model: openai/whisper-large-v3-turbo
tags:
- wft
- whisper
- automatic-speech-recognition
- audio
- speech
- generated_from_trainer
datasets:
- ntnu-smil/lttc-augmented-ft-1
metrics:
- wer
model-index:
- name: whisper-large-v3-turbo-augmented
  results:
  - task:
      type: automatic-speech-recognition
      name: Automatic Speech Recognition
    dataset:
      name: ntnu-smil/lttc-augmented-ft-1
      type: ntnu-smil/lttc-augmented-ft-1
    metrics:
    - type: wer
      value: 32.36001374098248
      name: Wer
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# whisper-large-v3-turbo-augmented

This model is a fine-tuned version of [openai/whisper-large-v3-turbo](https://huggingface.co/openai/whisper-large-v3-turbo) on the ntnu-smil/lttc-augmented-ft-1 dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3566
- Wer: 32.3600
- Cer: 18.4747

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer     | Cer     |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|
| 0.0483        | 1.0   | 190  | 1.2801          | 35.8640 | 20.7045 |
| 0.0503        | 2.0   | 380  | 1.3510          | 32.5318 | 20.3283 |
| 0.0033        | 3.0   | 570  | 1.2776          | 39.3336 | 22.9891 |
| 0.0007        | 4.0   | 760  | 1.3057          | 32.6692 | 18.6594 |
| 0.0002        | 5.0   | 950  | 1.3566          | 32.3600 | 18.4747 |


### Framework versions

- PEFT 0.14.0
- Transformers 4.47.0
- Pytorch 2.2.0+cu121
- Datasets 3.1.0
- Tokenizers 0.21.0