File size: 2,243 Bytes
351b0a4 f64eb2b 351b0a4 f64eb2b 351b0a4 f64eb2b 351b0a4 f64eb2b 351b0a4 f64eb2b 351b0a4 f64eb2b 351b0a4 f64eb2b 351b0a4 f64eb2b 351b0a4 f64eb2b 351b0a4 f64eb2b 351b0a4 f64eb2b 351b0a4 f64eb2b 351b0a4 f64eb2b 351b0a4 f64eb2b 351b0a4 f64eb2b 351b0a4 f64eb2b 351b0a4 f64eb2b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 |
---
library_name: transformers
language:
- en
license: mit
base_model: openai/whisper-large-v3-turbo
tags:
- wft
- whisper
- automatic-speech-recognition
- audio
- speech
- generated_from_trainer
datasets:
- ntnu-smil/lttc-augmented-ft-1
metrics:
- wer
model-index:
- name: whisper-large-v3-turbo-augmented
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: ntnu-smil/lttc-augmented-ft-1
type: ntnu-smil/lttc-augmented-ft-1
metrics:
- type: wer
value: 32.36001374098248
name: Wer
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# whisper-large-v3-turbo-augmented
This model is a fine-tuned version of [openai/whisper-large-v3-turbo](https://huggingface.co/openai/whisper-large-v3-turbo) on the ntnu-smil/lttc-augmented-ft-1 dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3566
- Wer: 32.3600
- Cer: 18.4747
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|
| 0.0483 | 1.0 | 190 | 1.2801 | 35.8640 | 20.7045 |
| 0.0503 | 2.0 | 380 | 1.3510 | 32.5318 | 20.3283 |
| 0.0033 | 3.0 | 570 | 1.2776 | 39.3336 | 22.9891 |
| 0.0007 | 4.0 | 760 | 1.3057 | 32.6692 | 18.6594 |
| 0.0002 | 5.0 | 950 | 1.3566 | 32.3600 | 18.4747 |
### Framework versions
- PEFT 0.14.0
- Transformers 4.47.0
- Pytorch 2.2.0+cu121
- Datasets 3.1.0
- Tokenizers 0.21.0 |