File size: 14,386 Bytes
f7d2750
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param sde_net_arch: Network architecture for extracting features\n        when using gSDE. If None, the latent features from the policy will be used.\n        Pass an empty list to use the states as features.\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9375a68950>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9375a689e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9375a68a70>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9375a68b00>", "_build": "<function ActorCriticPolicy._build at 0x7f9375a68b90>", "forward": "<function ActorCriticPolicy.forward at 0x7f9375a68c20>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9375a68cb0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f9375a68d40>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9375a68dd0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9375a68e60>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9375a68ef0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f9375a38750>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVngEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBXNoYXBllEsIhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSwiFlIwBQ5R0lFKUjARoaWdolGgSKJYgAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgKSwiFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWCAAAAAAAAAAAAAAAAAAAAJRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZRoFXSUUpSMDWJvdW5kZWRfYWJvdmWUaBIolggAAAAAAAAAAAAAAAAAAACUaCFLCIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVgQAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwFc2hhcGWUKYwFZHR5cGWUjAVudW1weZRoB5OUjAJpOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRijApfbnBfcmFuZG9tlE51Yi4=", "n": 4, "shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1658858481.9140642, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALPaED0e+rg/4hExPw23gD6/kLK87p7IuwAAAAAAAAAAc6zUva6Fl7ruT1Q8tVdZNpSxETpmIFI1AACAPwAAAABmesG79nRkuru10rn3aWA1ivW7ulVa9zgAAIA/AACAP03SNz4oWTo/rjVvvs6dfb6k5G29w9MNvQAAAAAAAAAAzSHYPQUO8LuK7Ai9s6H7PFy/OL2QZ849AAAAAAAAgD8a8KA9BDqcP21hJj5RZ6G+7FQHPuoytToAAAAAAAAAAKB9Gb5kF0U+neEAPjR2Nr7LevQ6iyUUPQAAAAAAAAAAM1kRvNIMwLsruYE7STmdPDfewbud2li8AACAPwAAgD/Nt3W9S53ZPWqUiT0B+CW+XI3/PDIP07wAAAAAAAAAADP0Yb14Ick89inVPZxiML7bpY08EoxyPQAAAAAAAAAAzQenvR9N77mGVHk8QZ6INC6rpbrAWPUyAAAAAAAAAADN18c8KbhYukrVKDiGVhMz1uFfuhvCRrcAAIA/AACAP2ZYqL0fvaC5hU3iOjW4DDazEbA6rwwEugAAgD8AAIA/WjjXPdvFAj80RwG+Qd1fvjAx9bvmiZ+5AAAAAAAAAADzk5Q9ObAXP0oPhL1D95u+CNWbPE5mLT0AAAAAAAAAAJoZVDsp2BG6KXDLu8wv8Tcrsq076ckRtwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIzXUaaSkGYkCUhpRSlIwBbJRN6AOMAXSUR0CR43xZuAI6dX2UKGgGaAloD0MIC+9yEV9dZECUhpRSlGgVTegDaBZHQJHmNHvttyh1fZQoaAZoCWgPQwjiBKbTulNjQJSGlFKUaBVN6ANoFkdAkeiTeXRgJHV9lChoBmgJaA9DCNnr3R/vTSnAlIaUUpRoFU0lAWgWR0CR+xWOp84QdX2UKGgGaAloD0MIsi0DztKNZkCUhpRSlGgVTegDaBZHQJH8BMSK3ux1fZQoaAZoCWgPQwhuTiUDwAdjQJSGlFKUaBVN6ANoFkdAkgNBjSXt0HV9lChoBmgJaA9DCNRkxtvK7mRAlIaUUpRoFU3oA2gWR0CSD5A5Jbt7dX2UKGgGaAloD0MIyECeXT7CY0CUhpRSlGgVTegDaBZHQJIPvdGiHqN1fZQoaAZoCWgPQwhv10tTBLVfQJSGlFKUaBVN6ANoFkdAkhbFqzqrzXV9lChoBmgJaA9DCFqEYitoy2RAlIaUUpRoFU3oA2gWR0CSGYIT4+KTdX2UKGgGaAloD0MIem8MAcAab0CUhpRSlGgVTY0CaBZHQJIdAtL+PzZ1fZQoaAZoCWgPQwhOm3Eaoo1kQJSGlFKUaBVN6ANoFkdAkiJjMJQcgnV9lChoBmgJaA9DCBFuMqoMHmNAlIaUUpRoFU3oA2gWR0CSJ7OH31zydX2UKGgGaAloD0MI6fAQxs8nYkCUhpRSlGgVTegDaBZHQJIn+0kWykd1fZQoaAZoCWgPQwgsLLgf8DdeQJSGlFKUaBVN6ANoFkdAkitHVG0/nnV9lChoBmgJaA9DCLBUF/Ay3m5AlIaUUpRoFU15AWgWR0CSL+z67/XHdX2UKGgGaAloD0MI58b0hKVfZkCUhpRSlGgVTegDaBZHQJIwAgxJul51fZQoaAZoCWgPQwiSWb3D7StlQJSGlFKUaBVN6ANoFkdAkjBnAEdNnHV9lChoBmgJaA9DCLa8cr1tbGVAlIaUUpRoFU3oA2gWR0CSNOBZZB9kdX2UKGgGaAloD0MIyLWhYhzIbECUhpRSlGgVTboDaBZHQJI2M8Tzund1fZQoaAZoCWgPQwgvv9NkRtFgQJSGlFKUaBVN6ANoFkdAkjc00iyIHnV9lChoBmgJaA9DCIszhjnBBWZAlIaUUpRoFU3oA2gWR0CSN5f0VafSdX2UKGgGaAloD0MI/B2KAn2na0CUhpRSlGgVTW0CaBZHQJJNOZ1FH8V1fZQoaAZoCWgPQwhvERjrW+NwQJSGlFKUaBVNmANoFkdAkk10m6XjVHV9lChoBmgJaA9DCBJMNbOW2m5AlIaUUpRoFU31AWgWR0CSUNqCYkVvdX2UKGgGaAloD0MIZVHYRdHKb0CUhpRSlGgVTUMDaBZHQJJSVQVKwpx1fZQoaAZoCWgPQwgNNQpJpiNxQJSGlFKUaBVNHwFoFkdAklcUx7AtWnV9lChoBmgJaA9DCLHCLR9J025AlIaUUpRoFU1jAWgWR0CSWcgVGkN4dX2UKGgGaAloD0MIJLa7B2j7YUCUhpRSlGgVTegDaBZHQJJb0S+QEIR1fZQoaAZoCWgPQwg+k/3ztLFjQJSGlFKUaBVN6ANoFkdAkmo+4kNWl3V9lChoBmgJaA9DCEXXhR+com1AlIaUUpRoFU1/AWgWR0CSapYnOSntdX2UKGgGaAloD0MIZ/M4DOafcECUhpRSlGgVTZcBaBZHQJJxl1uBMBZ1fZQoaAZoCWgPQwjyKJXwRKpwQJSGlFKUaBVNvANoFkdAknMl4s3AEnV9lChoBmgJaA9DCNO84xSdJmNAlIaUUpRoFU3oA2gWR0CSdWgHNX5ndX2UKGgGaAloD0MIMSQnE7fHW0CUhpRSlGgVTegDaBZHQJJ43WEsasJ1fZQoaAZoCWgPQwhqwCDpk/FwQJSGlFKUaBVN9AJoFkdAknre/tY0VXV9lChoBmgJaA9DCN16TQ8K+mVAlIaUUpRoFU3oA2gWR0CSfRGEwnIAdX2UKGgGaAloD0MI2Ne61Ai8YUCUhpRSlGgVTegDaBZHQJJ9JbNbC791fZQoaAZoCWgPQwhBYrt7gD5kQJSGlFKUaBVN6ANoFkdAkn146CDmKnV9lChoBmgJaA9DCEhwI2WLSmNAlIaUUpRoFU3oA2gWR0CSgwS2H+IedX2UKGgGaAloD0MI1VqYhfb2YkCUhpRSlGgVTegDaBZHQJKDcnkT6BR1fZQoaAZoCWgPQwj9TShEwHFkQJSGlFKUaBVN6ANoFkdAkpmyKekHlnV9lChoBmgJaA9DCJ29M9oqEGFAlIaUUpRoFU3oA2gWR0CSnhi6g/TtdX2UKGgGaAloD0MIgxPRr626akCUhpRSlGgVTUoDaBZHQJKgLsVtXPt1fZQoaAZoCWgPQwgF+dnI9fdwQJSGlFKUaBVNbQFoFkdAkqO0it7rs3V9lChoBmgJaA9DCFLzVfIxNXFAlIaUUpRoFU3VAWgWR0CSpt6OHWSVdX2UKGgGaAloD0MIteGwNPDPXECUhpRSlGgVTegDaBZHQJKnSFFlTWJ1fZQoaAZoCWgPQwipFhHFZIptQJSGlFKUaBVNyAFoFkdAkqhczl90BHV9lChoBmgJaA9DCOokW10OT3FAlIaUUpRoFU0iAWgWR0CSqgq1w5vMdX2UKGgGaAloD0MIeqaXGItbcECUhpRSlGgVTaoCaBZHQJKq2OuJUHZ1fZQoaAZoCWgPQwjRWtHmOItrQJSGlFKUaBVNeAFoFkdAkqrzkdV/+nV9lChoBmgJaA9DCDi/YaJBwm1AlIaUUpRoFU3tAmgWR0CSr+Mqz7djdX2UKGgGaAloD0MIdOygElf6Y0CUhpRSlGgVTegDaBZHQJKzqCDmKZV1fZQoaAZoCWgPQwjpmzQNCpZhQJSGlFKUaBVN6ANoFkdAkrPsyBTXKHV9lChoBmgJaA9DCCHp0yr6h29AlIaUUpRoFU2PAWgWR0CSuHDyvs7ddX2UKGgGaAloD0MI3L3cJ8c4YECUhpRSlGgVTegDaBZHQJK53W+XZ5B1fZQoaAZoCWgPQwhTWRR2kcRxQJSGlFKUaBVNAQJoFkdAkrtBc/t6X3V9lChoBmgJaA9DCG0ANiBCl25AlIaUUpRoFU1vAWgWR0CSvb+LWI43dX2UKGgGaAloD0MI598u+3V+b0CUhpRSlGgVTboDaBZHQJK+AY64lQd1fZQoaAZoCWgPQwjGwaVjzohsQJSGlFKUaBVNgwJoFkdAksAFhPTG53V9lChoBmgJaA9DCJ2dDI4Sa2BAlIaUUpRoFU3oA2gWR0CSxEBGQSzxdX2UKGgGaAloD0MIDag3o+YTZkCUhpRSlGgVTegDaBZHQJLLWQYDT0B1fZQoaAZoCWgPQwixwi0fyXRxQJSGlFKUaBVNAQJoFkdAkstslHBk7XV9lChoBmgJaA9DCHODoQ6r7GxAlIaUUpRoFU3PAWgWR0CSzMPVNHpbdX2UKGgGaAloD0MIJh5QNmUIbkCUhpRSlGgVTYcBaBZHQJLNr24/eLx1fZQoaAZoCWgPQwhBRkCFI2ptQJSGlFKUaBVNawFoFkdAks77Zi/fwnV9lChoBmgJaA9DCIYgByXM6G5AlIaUUpRoFU38AmgWR0CSz0j9XLeRdX2UKGgGaAloD0MIeTpXlJJAbECUhpRSlGgVTdoBaBZHQJLnvJW/8EV1fZQoaAZoCWgPQwjHSPYIdcNxQJSGlFKUaBVNAQNoFkdAkufqjSG8EnV9lChoBmgJaA9DCO+NIQC4r29AlIaUUpRoFU2tAWgWR0CS6V90zTF3dX2UKGgGaAloD0MIyAiocIQwa0CUhpRSlGgVTWADaBZHQJLqDcDbJwN1fZQoaAZoCWgPQwgA4xk0dCpuQJSGlFKUaBVNcQNoFkdAkux9hRZU1nV9lChoBmgJaA9DCNo8DoP5JUhAlIaUUpRoFU0zAWgWR0CS75MHKOktdX2UKGgGaAloD0MI+rfLft2cZUCUhpRSlGgVTegDaBZHQJLv4oy9EkV1fZQoaAZoCWgPQwgBUMWNW9huQJSGlFKUaBVNKQJoFkdAkvG0BOpKjHV9lChoBmgJaA9DCMDnhxHCOmxAlIaUUpRoFU36AWgWR0CS819EkSmJdX2UKGgGaAloD0MIqP3WThS9bUCUhpRSlGgVTY0CaBZHQJL0Mk0Jng51fZQoaAZoCWgPQwj1aRX9IcluQJSGlFKUaBVNmAFoFkdAkvZkFGG21HV9lChoBmgJaA9DCNJT5BAxinBAlIaUUpRoFU3bAWgWR0CS98TN+so2dX2UKGgGaAloD0MIelORCuMvbkCUhpRSlGgVTeYBaBZHQJL5ZppN9IB1fZQoaAZoCWgPQwgNMzSeSPdxQJSGlFKUaBVNngFoFkdAkvwNqUNayXV9lChoBmgJaA9DCOkrSDMWZ2NAlIaUUpRoFU3oA2gWR0CS/DYq5LAYdX2UKGgGaAloD0MIisvxCkTJUECUhpRSlGgVTQcBaBZHQJL8p4/u9e11fZQoaAZoCWgPQwjLhcq/FrNyQJSGlFKUaBVNoAFoFkdAkv2o3WFvh3V9lChoBmgJaA9DCNfCLLTzBHFAlIaUUpRoFU1tAWgWR0CS/jWjXWe6dX2UKGgGaAloD0MITwRxHk6kOECUhpRSlGgVTR0BaBZHQJL/CACnxax1fZQoaAZoCWgPQwh+Vpkprc8awJSGlFKUaBVNBQFoFkdAkwN1j/dZaHV9lChoBmgJaA9DCCZUcHhBOHFAlIaUUpRoFU18AWgWR0CTBLgRsdkrdX2UKGgGaAloD0MI+8qD9FTkcECUhpRSlGgVTcACaBZHQJMFJTisGPh1fZQoaAZoCWgPQwi6vg8HCVlvQJSGlFKUaBVNSAJoFkdAkwVpzT4L1HV9lChoBmgJaA9DCIhJuJBHjXFAlIaUUpRoFU1/AmgWR0CTBdTdLxqgdX2UKGgGaAloD0MIsBu2LUqQckCUhpRSlGgVTa8BaBZHQJMHVmh/RVp1fZQoaAZoCWgPQwgmHeVgNnVtQJSGlFKUaBVNXAFoFkdAkwhKol2NenV9lChoBmgJaA9DCMuGNZVFyXBAlIaUUpRoFU0tAmgWR0CTCIR5kbxWdX2UKGgGaAloD0MIAJATJkwucUCUhpRSlGgVTVQBaBZHQJMJ9sbedkJ1fZQoaAZoCWgPQwjc8pGUdGNyQJSGlFKUaBVNTQNoFkdAkwor3Cbc5HV9lChoBmgJaA9DCOl/uRYt3GxAlIaUUpRoFU1ZAWgWR0CTC+osI3R5dX2UKGgGaAloD0MI2V92T56vb0CUhpRSlGgVTf8BaBZHQJML/iYLLIR1fZQoaAZoCWgPQwg89N2trJpuQJSGlFKUaBVN0AFoFkdAkxBMWGh24nV9lChoBmgJaA9DCExSmWIOQ3BAlIaUUpRoFU3QAWgWR0CTEfk5IYm+dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.17.3"}}