File size: 10,871 Bytes
fbdb7ad |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 |
# docs and experiment results can be found at https://docs.cleanrl.dev/rl-algorithms/ddpg/#ddpg_continuous_actionpy
import os
import random
import time
from dataclasses import dataclass
import gymnasium as gym
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import tyro
from stable_baselines3.common.buffers import ReplayBuffer
from torch.utils.tensorboard import SummaryWriter
@dataclass
class Args:
exp_name: str = os.path.basename(__file__)[: -len(".py")]
"""the name of this experiment"""
seed: int = 1
"""seed of the experiment"""
torch_deterministic: bool = True
"""if toggled, `torch.backends.cudnn.deterministic=False`"""
cuda: bool = True
"""if toggled, cuda will be enabled by default"""
track: bool = False
"""if toggled, this experiment will be tracked with Weights and Biases"""
wandb_project_name: str = "cleanRL"
"""the wandb's project name"""
wandb_entity: str = None
"""the entity (team) of wandb's project"""
capture_video: bool = False
"""whether to capture videos of the agent performances (check out `videos` folder)"""
save_model: bool = False
"""whether to save model into the `runs/{run_name}` folder"""
upload_model: bool = False
"""whether to upload the saved model to huggingface"""
hf_entity: str = ""
"""the user or org name of the model repository from the Hugging Face Hub"""
# Algorithm specific arguments
env_id: str = "Hopper-v4"
"""the environment id of the Atari game"""
total_timesteps: int = 1000000
"""total timesteps of the experiments"""
learning_rate: float = 3e-4
"""the learning rate of the optimizer"""
buffer_size: int = int(1e6)
"""the replay memory buffer size"""
gamma: float = 0.99
"""the discount factor gamma"""
tau: float = 0.005
"""target smoothing coefficient (default: 0.005)"""
batch_size: int = 256
"""the batch size of sample from the reply memory"""
exploration_noise: float = 0.1
"""the scale of exploration noise"""
learning_starts: int = 25e3
"""timestep to start learning"""
policy_frequency: int = 2
"""the frequency of training policy (delayed)"""
noise_clip: float = 0.5
"""noise clip parameter of the Target Policy Smoothing Regularization"""
def make_env(env_id, seed, idx, capture_video, run_name):
def thunk():
if capture_video and idx == 0:
env = gym.make(env_id, render_mode="rgb_array")
env = gym.wrappers.RecordVideo(env, f"videos/{run_name}")
else:
env = gym.make(env_id)
env = gym.wrappers.RecordEpisodeStatistics(env)
env.action_space.seed(seed)
return env
return thunk
# ALGO LOGIC: initialize agent here:
class QNetwork(nn.Module):
def __init__(self, env):
super().__init__()
self.fc1 = nn.Linear(np.array(env.single_observation_space.shape).prod() + np.prod(env.single_action_space.shape), 256)
self.fc2 = nn.Linear(256, 256)
self.fc3 = nn.Linear(256, 1)
def forward(self, x, a):
x = torch.cat([x, a], 1)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
class Actor(nn.Module):
def __init__(self, env):
super().__init__()
self.fc1 = nn.Linear(np.array(env.single_observation_space.shape).prod(), 256)
self.fc2 = nn.Linear(256, 256)
self.fc_mu = nn.Linear(256, np.prod(env.single_action_space.shape))
# action rescaling
self.register_buffer(
"action_scale", torch.tensor((env.action_space.high - env.action_space.low) / 2.0, dtype=torch.float32)
)
self.register_buffer(
"action_bias", torch.tensor((env.action_space.high + env.action_space.low) / 2.0, dtype=torch.float32)
)
def forward(self, x):
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = torch.tanh(self.fc_mu(x))
return x * self.action_scale + self.action_bias
if __name__ == "__main__":
import stable_baselines3 as sb3
if sb3.__version__ < "2.0":
raise ValueError(
"""Ongoing migration: run the following command to install the new dependencies:
poetry run pip install "stable_baselines3==2.0.0a1"
"""
)
args = tyro.cli(Args)
run_name = f"{args.env_id}__{args.exp_name}__{args.seed}__{int(time.time())}"
if args.track:
import wandb
wandb.init(
project=args.wandb_project_name,
entity=args.wandb_entity,
sync_tensorboard=True,
config=vars(args),
name=run_name,
monitor_gym=True,
save_code=True,
)
writer = SummaryWriter(f"runs/{run_name}")
writer.add_text(
"hyperparameters",
"|param|value|\n|-|-|\n%s" % ("\n".join([f"|{key}|{value}|" for key, value in vars(args).items()])),
)
# TRY NOT TO MODIFY: seeding
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.backends.cudnn.deterministic = args.torch_deterministic
device = torch.device("cuda" if torch.cuda.is_available() and args.cuda else "cpu")
# env setup
envs = gym.vector.SyncVectorEnv([make_env(args.env_id, args.seed, 0, args.capture_video, run_name)])
assert isinstance(envs.single_action_space, gym.spaces.Box), "only continuous action space is supported"
actor = Actor(envs).to(device)
qf1 = QNetwork(envs).to(device)
qf1_target = QNetwork(envs).to(device)
target_actor = Actor(envs).to(device)
target_actor.load_state_dict(actor.state_dict())
qf1_target.load_state_dict(qf1.state_dict())
q_optimizer = optim.Adam(list(qf1.parameters()), lr=args.learning_rate)
actor_optimizer = optim.Adam(list(actor.parameters()), lr=args.learning_rate)
envs.single_observation_space.dtype = np.float32
rb = ReplayBuffer(
args.buffer_size,
envs.single_observation_space,
envs.single_action_space,
device,
handle_timeout_termination=False,
)
start_time = time.time()
# TRY NOT TO MODIFY: start the game
obs, _ = envs.reset(seed=args.seed)
for global_step in range(args.total_timesteps):
# ALGO LOGIC: put action logic here
if global_step < args.learning_starts:
actions = np.array([envs.single_action_space.sample() for _ in range(envs.num_envs)])
else:
with torch.no_grad():
actions = actor(torch.Tensor(obs).to(device))
actions += torch.normal(0, actor.action_scale * args.exploration_noise)
actions = actions.cpu().numpy().clip(envs.single_action_space.low, envs.single_action_space.high)
# TRY NOT TO MODIFY: execute the game and log data.
next_obs, rewards, terminations, truncations, infos = envs.step(actions)
# TRY NOT TO MODIFY: record rewards for plotting purposes
if "final_info" in infos:
for info in infos["final_info"]:
print(f"global_step={global_step}, episodic_return={info['episode']['r']}")
writer.add_scalar("charts/episodic_return", info["episode"]["r"], global_step)
writer.add_scalar("charts/episodic_length", info["episode"]["l"], global_step)
break
# TRY NOT TO MODIFY: save data to reply buffer; handle `final_observation`
real_next_obs = next_obs.copy()
for idx, trunc in enumerate(truncations):
if trunc:
real_next_obs[idx] = infos["final_observation"][idx]
rb.add(obs, real_next_obs, actions, rewards, terminations, infos)
# TRY NOT TO MODIFY: CRUCIAL step easy to overlook
obs = next_obs
# ALGO LOGIC: training.
if global_step > args.learning_starts:
data = rb.sample(args.batch_size)
with torch.no_grad():
next_state_actions = target_actor(data.next_observations)
qf1_next_target = qf1_target(data.next_observations, next_state_actions)
next_q_value = data.rewards.flatten() + (1 - data.dones.flatten()) * args.gamma * (qf1_next_target).view(-1)
qf1_a_values = qf1(data.observations, data.actions).view(-1)
qf1_loss = F.mse_loss(qf1_a_values, next_q_value)
# optimize the model
q_optimizer.zero_grad()
qf1_loss.backward()
q_optimizer.step()
if global_step % args.policy_frequency == 0:
actor_loss = -qf1(data.observations, actor(data.observations)).mean()
actor_optimizer.zero_grad()
actor_loss.backward()
actor_optimizer.step()
# update the target network
for param, target_param in zip(actor.parameters(), target_actor.parameters()):
target_param.data.copy_(args.tau * param.data + (1 - args.tau) * target_param.data)
for param, target_param in zip(qf1.parameters(), qf1_target.parameters()):
target_param.data.copy_(args.tau * param.data + (1 - args.tau) * target_param.data)
if global_step % 100 == 0:
writer.add_scalar("losses/qf1_values", qf1_a_values.mean().item(), global_step)
writer.add_scalar("losses/qf1_loss", qf1_loss.item(), global_step)
writer.add_scalar("losses/actor_loss", actor_loss.item(), global_step)
print("SPS:", int(global_step / (time.time() - start_time)))
writer.add_scalar("charts/SPS", int(global_step / (time.time() - start_time)), global_step)
if args.save_model:
model_path = f"runs/{run_name}/{args.exp_name}.cleanrl_model"
torch.save((actor.state_dict(), qf1.state_dict()), model_path)
print(f"model saved to {model_path}")
from cleanrl_utils.evals.ddpg_eval import evaluate
episodic_returns = evaluate(
model_path,
make_env,
args.env_id,
eval_episodes=10,
run_name=f"{run_name}-eval",
Model=(Actor, QNetwork),
device=device,
exploration_noise=args.exploration_noise,
)
for idx, episodic_return in enumerate(episodic_returns):
writer.add_scalar("eval/episodic_return", episodic_return, idx)
if args.upload_model:
from cleanrl_utils.huggingface import push_to_hub
repo_name = f"{args.env_id}-{args.exp_name}-seed{args.seed}"
repo_id = f"{args.hf_entity}/{repo_name}" if args.hf_entity else repo_name
push_to_hub(args, episodic_returns, repo_id, "DDPG", f"runs/{run_name}", f"videos/{run_name}-eval")
envs.close()
writer.close()
|