File size: 15,363 Bytes
a1652f6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 |
import os
import re
from typing import Dict, List, Union
import json
from swift.llm import InferRequest
class ORM:
def __call__(self, **kwargs) -> List[float]:
raise NotImplementedError
class ReactORM(ORM):
@staticmethod
def evaluate_action_reward(action_pred: list, action_ref: list, cand_list: list, ref_list: list):
f1 = []
for i in range(len(action_pred)):
ref_action = action_ref[i]
pred_action = action_pred[i]
ref_input = ref_list[i]
cand_input = cand_list[i]
ref_is_json = False
try:
ref_input_json = json.loads(ref_input)
ref_is_json = True
except Exception:
ref_input_json = ref_input
cand_is_json = False
try:
cand_input_json = json.loads(cand_input)
cand_is_json = True
except Exception:
cand_input_json = cand_input
if ref_action != pred_action or (ref_is_json ^ cand_is_json):
f1.append(0)
elif not ref_is_json and not cand_is_json:
rougel = ReactORM.evaluate_rougel([ref_input_json], [cand_input_json])
if rougel is None or rougel < 10:
f1.append(0)
elif 10 <= rougel < 20:
f1.append(0.1)
else:
f1.append(1)
else:
if not isinstance(ref_input_json, dict) or not isinstance(cand_input_json, dict):
# This cannot be happen, but:
# line 62, in evaluate_action_reward
# for k, v in ref_input_json.items():
# AttributeError: 'str' object has no attribute 'items'
# print(f'>>>>>>ref_input_json: {ref_input_json}, cand_input_json: {cand_input_json}')
f1.append(0)
continue
half_match = 0
full_match = 0
if ref_input_json == {}:
if cand_input_json == {}:
f1.append(1)
else:
f1.append(0)
else:
for k, v in ref_input_json.items():
if k in cand_input_json.keys():
if cand_input_json[k] == v:
full_match += 1
else:
half_match += 1
recall = (0.5 * half_match + full_match) / (len(ref_input_json) + 1e-30)
precision = (0.5 * half_match + full_match) / (len(cand_input_json) + 1e-30)
try:
f1.append((2 * recall * precision) / (recall + precision))
except Exception:
f1.append(0.0)
if f1[0] == 1.0:
return True
else:
return False
@staticmethod
def parse_action(text):
if 'Action Input:' in text:
input_idx = text.rindex('Action Input:')
action_input = text[input_idx + len('Action Input:'):].strip()
else:
action_input = '{}'
if 'Action:' in text:
action_idx = text.rindex('Action:')
action = text[action_idx + len('Action:'):].strip()
if 'Action Input:' in action:
input_idx = action.index('Action Input:')
action = action[:input_idx].strip()
else:
action = 'none'
return action, action_input
@staticmethod
def parse_output(text):
action, action_input = ReactORM.parse_action(text)
return action, action_input
def __call__(self, infer_requests: List[Union[InferRequest, Dict]], solution: List[str], **kwargs) -> List[float]:
rewards = []
if not isinstance(infer_requests[0], str):
predictions = [request['messages'][-1]['content'] for request in infer_requests]
else:
predictions = infer_requests
for prediction, ground_truth in zip(predictions, solution):
if prediction.endswith('Observation:'):
prediction = prediction[:prediction.index('Observation:')].strip()
action_ref = []
action_input_ref = []
action_pred = []
action_input_pred = []
reference = ground_truth
prediction = prediction.replace('<|endoftext|>', '').replace('<|im_end|>', '').strip()
ref_action, ref_input = ReactORM.parse_output(reference)
pred_action, pred_input = ReactORM.parse_output(prediction)
action_ref.append(ref_action)
action_input_ref.append(ref_input)
if pred_action is None:
action_pred.append('none')
else:
action_pred.append(pred_action)
if pred_input is None:
action_input_pred.append('{}')
else:
action_input_pred.append(pred_input)
reward = ReactORM.evaluate_action_reward(action_pred, action_ref, action_input_pred, action_input_ref)
rewards.append(float(reward))
return rewards
@staticmethod
def evaluate_rougel(cand_list: list, ref_list: list):
if len(ref_list) == 0:
return None
try:
from rouge import Rouge
rouge = Rouge()
rouge_score = rouge.get_scores(hyps=cand_list, refs=ref_list, avg=True)
rougel = rouge_score['rouge-l']['f']
return rougel
except Exception:
return None
class MathORM(ORM):
def __init__(self):
from transformers.utils import strtobool
self.use_opencompass = strtobool(os.environ.get('USE_OPENCOMPASS_EVALUATOR', 'False'))
if self.use_opencompass:
from opencompass.datasets.math import MATHEvaluator
self.evaluator = MATHEvaluator()
@staticmethod
def check_terminate(answers: Union[str, List[str]]) -> List[bool]:
if isinstance(answers, str):
answers = [answers]
results = []
for answer in answers:
results.append('\\boxed' in answer)
return results
@staticmethod
def extract_boxed_result(text):
pattern = r'\\boxed{([^}]*)}'
match = re.search(pattern, text)
if match:
return match.group(1).strip()
else:
return text
@staticmethod
def clean_latex(latex_str):
latex_str = re.sub(r'\\\(|\\\)|\\\[|\\]', '', latex_str)
latex_str = latex_str.replace('}}', '}').replace('{', '').replace('}', '')
return latex_str.strip()
@staticmethod
def parse_expression(latex_str):
from sympy import simplify
from sympy.parsing.latex import parse_latex
try:
expr = parse_latex(latex_str)
return simplify(expr)
except Exception:
return None
@staticmethod
def compare_consecutive(first, second):
cleaned_list = [MathORM.clean_latex(latex) for latex in [first, second]]
parsed_exprs = [MathORM.parse_expression(latex) for latex in cleaned_list]
if hasattr(parsed_exprs[0], 'equals') and hasattr(parsed_exprs[1], 'equals'):
value = parsed_exprs[0].equals(parsed_exprs[1])
else:
value = parsed_exprs[0] == parsed_exprs[1]
if value is None:
value = False
return value
def __call__(self, infer_requests: List[Union[InferRequest, Dict]], ground_truths: List[str],
**kwargs) -> List[float]:
rewards = []
predictions = [request.messages[-1]['content'] for request in infer_requests]
for prediction, ground_truth in zip(predictions, ground_truths):
if '# Answer' in prediction:
prediction = prediction.split('# Answer')[1]
if '# Answer' in ground_truth:
ground_truth = ground_truth.split('# Answer')[1]
prediction = prediction.strip()
ground_truth = ground_truth.strip()
prediction = MathORM.extract_boxed_result(prediction)
ground_truth = MathORM.extract_boxed_result(ground_truth)
if self.use_opencompass:
reward = self.evaluator.is_equiv(prediction, ground_truth)
else:
reward = MathORM.compare_consecutive(prediction, ground_truth)
rewards.append(float(reward))
return rewards
class MathAccuracy(ORM):
def __init__(self):
import importlib.util
assert importlib.util.find_spec('math_verify') is not None, (
"The math_verify package is required but not installed. Please install it using 'pip install math_verify'.")
def __call__(self, completions, solution, **kwargs) -> List[float]:
from latex2sympy2_extended import NormalizationConfig
from math_verify import LatexExtractionConfig, parse, verify
rewards = []
for content, sol in zip(completions, solution):
gold_parsed = parse(sol, extraction_mode='first_match')
if len(gold_parsed) != 0:
# We require the answer to be provided in correct latex (no malformed operators)
answer_parsed = parse(
content,
extraction_config=[
LatexExtractionConfig(
normalization_config=NormalizationConfig(
nits=False,
malformed_operators=False,
basic_latex=True,
equations=True,
boxed=True,
units=True,
),
# Ensures that boxed is tried first
boxed_match_priority=0,
try_extract_without_anchor=False,
)
],
extraction_mode='first_match',
)
# edge case
try:
reward = float(verify(gold_parsed, answer_parsed))
except Exception:
reward = 0.0
else:
# If the gold solution is not parseable, we reward 0 to skip this example
reward = 0.0
rewards.append(reward)
return rewards
class Format(ORM):
def __call__(self, completions, **kwargs) -> List[float]:
"""Reward function that checks if the completion has a specific format."""
pattern = r'^<think>.*?</think>\s*<answer>.*?</answer>(?![\s\S])'
matches = [re.match(pattern, content, re.DOTALL | re.MULTILINE) for content in completions]
return [1.0 if match else 0.0 for match in matches]
class ReActFormat(ORM):
def __call__(self, completions, **kwargs) -> List[float]:
"""Reward function that checks if the completion has a specific format."""
pattern = r'^<think>.*?</think>\s*Action:.*?Action Input:.*?$'
matches = [re.match(pattern, content, re.DOTALL | re.MULTILINE) for content in completions]
return [1.0 if match else 0.0 for match in matches]
class CosineReward(ORM):
# https://arxiv.org/abs/2502.03373
def __init__(self,
tokenizer=None,
cosine_min_len_value_wrong: float = -0.5,
cosine_max_len_value_wrong: float = 0.0,
cosine_min_len_value_correct: float = 1.0,
cosine_max_len_value_correct: float = 0.5,
cosine_max_len: int = 1000,
accuracy_orm=None):
self.tokenizer = tokenizer
self.min_len_value_wrong = cosine_min_len_value_wrong
self.max_len_value_wrong = cosine_max_len_value_wrong
self.min_len_value_correct = cosine_min_len_value_correct
self.max_len_value_correct = cosine_max_len_value_correct
self.max_len = cosine_max_len
self.accuracy_orm = accuracy_orm or MathAccuracy()
@staticmethod
def cosfn(t, T, min_value, max_value):
import math
return max_value - (max_value - min_value) * (1 - math.cos(t * math.pi / T)) / 2
def __call__(self, completions, solution, **kwargs) -> List[float]:
acc_rewards = self.accuracy_orm(completions, solution, **kwargs)
rewards = []
for content, acc_reward in zip(completions, acc_rewards):
is_correct = acc_reward >= 1.
if is_correct:
# Swap min/max for correct answers
min_value = self.max_len_value_correct
max_value = self.min_len_value_correct
else:
min_value = self.max_len_value_wrong
max_value = self.min_len_value_wrong
gen_len = len(self.tokenizer.encode(content))
reward = self.cosfn(gen_len, self.max_len, min_value, max_value)
rewards.append(reward)
return rewards
class RepetitionPenalty(ORM):
# https://arxiv.org/abs/2502.03373
def __init__(self, repetition_n_grams: int = 3, repetition_max_penalty: float = -1.0):
self.ngram_size = repetition_n_grams
self.max_penalty = repetition_max_penalty
@staticmethod
def zipngram(text: str, ngram_size: int):
words = text.lower().split()
return zip(*[words[i:] for i in range(ngram_size)])
def __call__(self, completions, **kwargs) -> List[float]:
"""
reward function the penalizes repetitions
Args:
completions: List of model completions
"""
rewards = []
for completion in completions:
if completion == '':
rewards.append(0.0)
continue
if len(completion.split()) < self.ngram_size:
rewards.append(0.0)
continue
ngrams = set()
total = 0
for ng in self.zipngram(completion, self.ngram_size):
ngrams.add(ng)
total += 1
scaling = 1 - len(ngrams) / total
reward = scaling * self.max_penalty
rewards.append(reward)
return rewards
class SoftOverlong(ORM):
def __init__(self, tokenizer, soft_max_length, soft_cache_length):
self.tokenizer = tokenizer
assert soft_cache_length < soft_max_length
self.soft_max_length = soft_max_length
self.soft_cache_length = soft_cache_length
def __call__(self, completions, **kwargs) -> List[float]:
rewards = []
for completion in completions:
completion_length = len(self.tokenizer.encode(completion))
expected_len = self.soft_max_length - self.soft_cache_length
exceed_len = completion_length - expected_len
rewards.append(min(-exceed_len / self.soft_cache_length, 0))
return rewards
orms = {
'toolbench': ReactORM,
'math': MathORM,
'accuracy': MathAccuracy,
'format': Format,
'react_format': ReActFormat,
'cosine': CosineReward,
'repetition': RepetitionPenalty,
'soft_overlong': SoftOverlong,
}
|