phoebeklett
commited on
Delete blocks.py
Browse files
blocks.py
DELETED
@@ -1,120 +0,0 @@
|
|
1 |
-
# Adapted from https://github.com/mosaicml/llm-foundry
|
2 |
-
# Classes changed: MPTBlock
|
3 |
-
# SPDX-License-Identifier: Apache-2.0
|
4 |
-
|
5 |
-
"""GPT Blocks used for the GPT Model."""
|
6 |
-
|
7 |
-
from typing import Dict, Optional, Tuple
|
8 |
-
import torch
|
9 |
-
import torch.nn as nn
|
10 |
-
from .attention import ATTN_CLASS_REGISTRY
|
11 |
-
from llmfoundry.models.layers.norm import NORM_CLASS_REGISTRY
|
12 |
-
|
13 |
-
class MPTMLP(nn.Module):
|
14 |
-
|
15 |
-
def __init__(self,
|
16 |
-
d_model: int,
|
17 |
-
expansion_ratio: int,
|
18 |
-
device: Optional[str] = None):
|
19 |
-
super().__init__()
|
20 |
-
self.up_proj = nn.Linear(d_model,
|
21 |
-
expansion_ratio * d_model,
|
22 |
-
device=device)
|
23 |
-
self.act = nn.GELU(approximate='none')
|
24 |
-
self.down_proj = nn.Linear(expansion_ratio * d_model,
|
25 |
-
d_model,
|
26 |
-
device=device)
|
27 |
-
self.down_proj._is_residual = True # type: ignore
|
28 |
-
|
29 |
-
def forward(self, x):
|
30 |
-
return self.down_proj(self.act(self.up_proj(x)))
|
31 |
-
|
32 |
-
class MPTBlock(nn.Module):
|
33 |
-
def __init__(
|
34 |
-
self,
|
35 |
-
d_model: int,
|
36 |
-
n_heads: int,
|
37 |
-
expansion_ratio: int,
|
38 |
-
attn_config: Dict = {
|
39 |
-
'attn_type': 'multihead_attention',
|
40 |
-
'attn_pdrop': 0.0,
|
41 |
-
'attn_impl': 'triton',
|
42 |
-
'qk_ln': False,
|
43 |
-
'clip_qkv': None,
|
44 |
-
'softmax_scale': None,
|
45 |
-
'prefix_lm': False,
|
46 |
-
'attn_uses_sequence_id': False,
|
47 |
-
'alibi': False,
|
48 |
-
'alibi_bias_max': 8,
|
49 |
-
},
|
50 |
-
resid_pdrop: float = 0.0,
|
51 |
-
norm_type: str = 'low_precision_layernorm',
|
52 |
-
verbose: int = 0,
|
53 |
-
device: Optional[str] = None,
|
54 |
-
**kwargs):
|
55 |
-
del kwargs # unused, just to capture any extra args from the config
|
56 |
-
super().__init__()
|
57 |
-
|
58 |
-
norm_class = NORM_CLASS_REGISTRY[norm_type.lower()]
|
59 |
-
attn_class = ATTN_CLASS_REGISTRY[attn_config['attn_type']]
|
60 |
-
|
61 |
-
self.norm_1 = norm_class(d_model, device=device)
|
62 |
-
self.attn = attn_class(
|
63 |
-
attn_impl=attn_config['attn_impl'],
|
64 |
-
clip_qkv=attn_config['clip_qkv'],
|
65 |
-
qk_ln=attn_config['qk_ln'],
|
66 |
-
softmax_scale=attn_config['softmax_scale'],
|
67 |
-
attn_pdrop=attn_config['attn_pdrop'],
|
68 |
-
d_model=d_model,
|
69 |
-
n_heads=n_heads,
|
70 |
-
verbose=verbose,
|
71 |
-
device=device,
|
72 |
-
)
|
73 |
-
self.norm_2 = norm_class(d_model, device=device)
|
74 |
-
self.ffn = MPTMLP(
|
75 |
-
d_model=d_model,
|
76 |
-
expansion_ratio=expansion_ratio,
|
77 |
-
device=device,
|
78 |
-
)
|
79 |
-
self.resid_attn_dropout = nn.Dropout(resid_pdrop)
|
80 |
-
self.resid_ffn_dropout = nn.Dropout(resid_pdrop)
|
81 |
-
|
82 |
-
def forward(
|
83 |
-
self,
|
84 |
-
x: torch.Tensor,
|
85 |
-
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
86 |
-
long_range_past_key_value:Optional[Tuple[torch.Tensor]] = None,
|
87 |
-
attn_bias: Optional[torch.Tensor] = None,
|
88 |
-
attn_bias_ae: Optional[torch.Tensor] = None,
|
89 |
-
attention_mask: Optional[torch.ByteTensor] = None,
|
90 |
-
is_causal: bool = True,
|
91 |
-
topk:int=None,
|
92 |
-
needs_weights:bool=None,
|
93 |
-
faiss_indexes:Tuple=None,
|
94 |
-
n_layers:int=None,
|
95 |
-
current_layer:int=None,
|
96 |
-
mask_by_sim:bool=False,
|
97 |
-
sim_threshold:float=None
|
98 |
-
) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor]]]:
|
99 |
-
a = self.norm_1(x)
|
100 |
-
b, attn_weights, past_key_value, reshaped_idx = self.attn(
|
101 |
-
a,
|
102 |
-
past_key_value=past_key_value,
|
103 |
-
long_range_past_key_value=long_range_past_key_value,
|
104 |
-
attn_bias=attn_bias,
|
105 |
-
attn_bias_ae=attn_bias_ae,
|
106 |
-
attention_mask=attention_mask,
|
107 |
-
is_causal=is_causal,
|
108 |
-
topk=topk,
|
109 |
-
needs_weights=needs_weights,
|
110 |
-
faiss_indexes=faiss_indexes,
|
111 |
-
n_layers=n_layers,
|
112 |
-
current_layer=current_layer,
|
113 |
-
mask_by_sim=mask_by_sim,
|
114 |
-
sim_threshold=sim_threshold
|
115 |
-
)
|
116 |
-
x = x + self.resid_attn_dropout(b)
|
117 |
-
m = self.norm_2(x)
|
118 |
-
n = self.ffn(m)
|
119 |
-
x = x + self.resid_ffn_dropout(n)
|
120 |
-
return x, attn_weights, past_key_value, reshaped_idx
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|