phoebeklett
commited on
Delete attention.py
Browse files- attention.py +0 -770
attention.py
DELETED
@@ -1,770 +0,0 @@
|
|
1 |
-
# Adapted from https://github.com/mosaicml/llm-foundry
|
2 |
-
# Classes changed: MultiheadAttention
|
3 |
-
# Functions changed: scaled_multihead_dot_product_attention, build_alibi_bias, build_attn_bias
|
4 |
-
# SPDX-License-Identifier: Apache-2.0
|
5 |
-
|
6 |
-
"""Attention layers."""
|
7 |
-
import math
|
8 |
-
import warnings
|
9 |
-
from typing import Optional
|
10 |
-
import torch
|
11 |
-
import torch.nn as nn
|
12 |
-
from einops import rearrange
|
13 |
-
from packaging import version
|
14 |
-
from torch import nn
|
15 |
-
from torch.linalg import vector_norm
|
16 |
-
from llmfoundry.models.layers.norm import LPLayerNorm
|
17 |
-
from torch.nn import functional as F
|
18 |
-
|
19 |
-
def _reset_is_causal(num_query_tokens: int, num_key_tokens: int,
|
20 |
-
original_is_causal: bool):
|
21 |
-
# disable causal when it is not needed
|
22 |
-
# necessary for flash & triton for generation with kv_cache
|
23 |
-
if original_is_causal and num_query_tokens != num_key_tokens:
|
24 |
-
if num_query_tokens != 1:
|
25 |
-
raise NotImplementedError(
|
26 |
-
'MPT does not support query and key with different number of tokens, unless number of query tokens is 1.'
|
27 |
-
)
|
28 |
-
else:
|
29 |
-
return False
|
30 |
-
return original_is_causal
|
31 |
-
|
32 |
-
|
33 |
-
def scaled_multihead_dot_product_attention(
|
34 |
-
query,
|
35 |
-
key,
|
36 |
-
value,
|
37 |
-
n_heads,
|
38 |
-
past_key_value=None,
|
39 |
-
long_range_past_key_value=None,
|
40 |
-
softmax_scale=None,
|
41 |
-
attn_bias=None,
|
42 |
-
attn_bias_ae=None,
|
43 |
-
key_padding_mask=None,
|
44 |
-
is_causal=False,
|
45 |
-
dropout_p=0.0,
|
46 |
-
training=False,
|
47 |
-
needs_weights=False,
|
48 |
-
multiquery=False,
|
49 |
-
topk=None,
|
50 |
-
faiss_indexes=None,
|
51 |
-
n_layers=None,
|
52 |
-
current_layer=None,
|
53 |
-
mask_by_sim=False,
|
54 |
-
sim_threshold=0.0
|
55 |
-
):
|
56 |
-
q = rearrange(query, 'b s (h d) -> b h s d', h=n_heads)
|
57 |
-
kv_n_heads = 1 if multiquery else n_heads
|
58 |
-
k = rearrange(key, 'b s (h d) -> b h d s', h=kv_n_heads)
|
59 |
-
v = rearrange(value, 'b s (h d) -> b h s d', h=kv_n_heads)
|
60 |
-
|
61 |
-
had_kv=False
|
62 |
-
if past_key_value is not None:
|
63 |
-
# attn_impl: flash & triton use kernels which expect input shape [b, s, h, d_head].
|
64 |
-
# kv_cache is therefore stored using that shape.
|
65 |
-
# attn_impl: torch stores the kv_cache in the ordering which is most advantageous
|
66 |
-
# for its attn computation ie
|
67 |
-
# keys are stored as tensors with shape [b, h, d_head, s] and
|
68 |
-
# values are stored as tensors with shape [b, h, s, d_head]
|
69 |
-
if len(past_key_value) != 0:
|
70 |
-
k = torch.cat([past_key_value[0], k], dim=3)
|
71 |
-
v = torch.cat([past_key_value[1], v], dim=2)
|
72 |
-
had_kv=True
|
73 |
-
|
74 |
-
past_key_value = (k, v)
|
75 |
-
|
76 |
-
b, h, s_q, d = q.shape
|
77 |
-
s_k = k.size(-1)
|
78 |
-
|
79 |
-
if softmax_scale is None:
|
80 |
-
softmax_scale = 1 / math.sqrt(d)
|
81 |
-
|
82 |
-
attn_weight = q.matmul(k) * softmax_scale
|
83 |
-
|
84 |
-
if attn_bias is not None:
|
85 |
-
# clamp to 0 necessary for torch 2.0 compile()
|
86 |
-
_s_q = max(0, attn_bias.size(2) - s_q)
|
87 |
-
_s_k = max(0, attn_bias.size(3) - s_k)
|
88 |
-
attn_bias = attn_bias[:, :, _s_q:, _s_k:]
|
89 |
-
|
90 |
-
if (attn_bias.size(-1) != 1 and
|
91 |
-
attn_bias.size(-1) != s_k) or (attn_bias.size(-2) != 1 and
|
92 |
-
attn_bias.size(-2) != s_q):
|
93 |
-
raise RuntimeError(
|
94 |
-
f'attn_bias (shape: {attn_bias.shape}) is expected to broadcast to shape: {attn_weight.shape}.'
|
95 |
-
)
|
96 |
-
attn_weight = attn_weight + attn_bias
|
97 |
-
|
98 |
-
if needs_weights: #will return memory indices w/attention weights
|
99 |
-
reshaped_idx = None
|
100 |
-
if long_range_past_key_value is not None or faiss_indexes is not None:
|
101 |
-
if long_range_past_key_value is not None: #manual memories
|
102 |
-
|
103 |
-
k_cache, v_cache = long_range_past_key_value
|
104 |
-
s_cache = k_cache.size(-1)
|
105 |
-
|
106 |
-
k_cache = k_cache.to(k.device)
|
107 |
-
v_cache = v_cache.to(k.device)
|
108 |
-
|
109 |
-
q_n = q/vector_norm(q, ord=2, dim=-1, keepdim=True)
|
110 |
-
k_n = k_cache/vector_norm(k_cache, ord=2, dim=-2, keepdim=True)
|
111 |
-
|
112 |
-
sim = q_n.matmul(k_n)
|
113 |
-
if s_cache<topk:
|
114 |
-
topk = s_cache #number of tokens in cache < topk
|
115 |
-
val, idx = torch.topk(sim, k=topk, dim=-1)
|
116 |
-
|
117 |
-
reshaped_idx = idx.reshape(b, h, s_q * topk)
|
118 |
-
|
119 |
-
selected_k = k_cache.gather(dim=-1, index=reshaped_idx.unsqueeze(-2).expand(-1, -1, d, -1))
|
120 |
-
selected_v = v_cache.gather(dim=-2, index=reshaped_idx.unsqueeze(-1).expand(-1, -1, -1, d))
|
121 |
-
|
122 |
-
sim_mask = rearrange(~ (val > sim_threshold).bool(), 'b h s i -> b h (s i)').unsqueeze(-2).expand(-1, -1, s_q, -1)
|
123 |
-
min_val = torch.finfo(selected_k.dtype).min
|
124 |
-
|
125 |
-
elif faiss_indexes is not None: #faiss indexes
|
126 |
-
|
127 |
-
kn_index, kv_index = faiss_indexes
|
128 |
-
q_n = q/vector_norm(q, ord=2, dim=-1, keepdim=True)
|
129 |
-
|
130 |
-
one_hot_encodings = F.one_hot(torch.arange(0, n_heads*n_layers, device=q.device))*10
|
131 |
-
q_n = torch.concat([rearrange(q_n, 'b h s d -> b (h s) d', h=n_heads), one_hot_encodings[n_heads*current_layer:n_heads*(current_layer+1)].unsqueeze(0).repeat_interleave(repeats=q.size(-2), dim=-2)], dim=-1).squeeze()
|
132 |
-
|
133 |
-
D, I = kn_index.search(q_n.to('cpu').numpy(), k=topk)
|
134 |
-
|
135 |
-
selected_k=rearrange(torch.tensor(kv_index.reconstruct_batch(I.flatten()))[:,:d], '(h s) d -> 1 h d s', h=32).to(q.device)
|
136 |
-
selected_v=rearrange(torch.tensor(kv_index.reconstruct_batch(I.flatten()))[:,d:], '(h s) d -> 1 h s d', h=32).to(q.device)
|
137 |
-
|
138 |
-
s_k_ae = selected_k.size(-1)
|
139 |
-
s_k += s_k_ae
|
140 |
-
attn_weight_cache = q.matmul(selected_k) * softmax_scale
|
141 |
-
if mask_by_sim:
|
142 |
-
attn_weight_cache = attn_weight_cache.masked_fill(sim_mask, min_val)
|
143 |
-
|
144 |
-
if attn_bias_ae is not None: #add alibi bias to memories
|
145 |
-
_s_q = max(0, attn_bias_ae.size(2) - s_q)
|
146 |
-
_s_k = max(0, attn_bias_ae.size(3) - s_k_ae)
|
147 |
-
attn_bias_ae = attn_bias_ae[:, :, _s_q:, _s_k:]
|
148 |
-
|
149 |
-
if (attn_bias_ae.size(-1) != 1 and
|
150 |
-
attn_bias_ae.size(-1) != s_k_ae) or (attn_bias_ae.size(-2) != 1 and
|
151 |
-
attn_bias_ae.size(-2) != s_q):
|
152 |
-
raise RuntimeError(
|
153 |
-
f'attn_bias (shape: {attn_bias_ae.shape}) is expected to broadcast to shape: {attn_weight_cache.shape}.'
|
154 |
-
)
|
155 |
-
attn_weight_cache = attn_weight_cache + attn_bias_ae
|
156 |
-
|
157 |
-
attn_weight = torch.cat([attn_weight_cache, attn_weight], dim=-1)
|
158 |
-
v = torch.cat([selected_v, v], dim=-2)
|
159 |
-
|
160 |
-
min_val = torch.finfo(q.dtype).min
|
161 |
-
|
162 |
-
if key_padding_mask is not None:
|
163 |
-
if attn_bias is not None:
|
164 |
-
warnings.warn(
|
165 |
-
'Propogating key_padding_mask to the attention module ' +\
|
166 |
-
'and applying it within the attention module can cause ' +\
|
167 |
-
'unneccessary computation/memory usage. Consider integrating ' +\
|
168 |
-
'into attn_bias once and passing that to each attention ' +\
|
169 |
-
'module instead.'
|
170 |
-
)
|
171 |
-
attn_weight = attn_weight.masked_fill(
|
172 |
-
~key_padding_mask.view((b, 1, 1, s_k)), min_val)
|
173 |
-
|
174 |
-
def _create_active_externalism_mask(k, s_q, device):
|
175 |
-
mask = torch.zeros(s_q, s_q * k, device=device, dtype=torch.bool)
|
176 |
-
for i in range(s_q):
|
177 |
-
mask[i, i * k : (i + 1) * k] = 1
|
178 |
-
return ~mask
|
179 |
-
|
180 |
-
if is_causal and (not q.size(2) == 1):
|
181 |
-
s = max(s_q, s_k)
|
182 |
-
causal_mask = attn_weight.new_ones(s, s, dtype=torch.float16)
|
183 |
-
causal_mask = causal_mask.tril()
|
184 |
-
causal_mask = causal_mask.to(torch.bool)
|
185 |
-
causal_mask = ~causal_mask
|
186 |
-
causal_mask = causal_mask[-s_q:, -s_k:]
|
187 |
-
|
188 |
-
if long_range_past_key_value is not None:
|
189 |
-
mask = _create_active_externalism_mask(k=topk,s_q=s_q, device=attn_weight.device)
|
190 |
-
s=s_q
|
191 |
-
if had_kv:
|
192 |
-
s += (past_key_value[0][0].size(-1) -s_q)
|
193 |
-
causal_mask = torch.cat([mask, causal_mask[:,-s:]], dim=1)
|
194 |
-
|
195 |
-
attn_weight = attn_weight.masked_fill(causal_mask.view(1, 1, s_q, s_k),
|
196 |
-
min_val)
|
197 |
-
|
198 |
-
attn_weight = torch.softmax(attn_weight, dim=-1)
|
199 |
-
|
200 |
-
if dropout_p:
|
201 |
-
attn_weight = torch.nn.functional.dropout(attn_weight,
|
202 |
-
p=dropout_p,
|
203 |
-
training=training,
|
204 |
-
inplace=True)
|
205 |
-
|
206 |
-
out = attn_weight.to(v.dtype).matmul(v)
|
207 |
-
out = rearrange(out, 'b h s d -> b s (h d)')
|
208 |
-
|
209 |
-
if needs_weights:
|
210 |
-
return out, attn_weight, past_key_value, reshaped_idx
|
211 |
-
return out, None, past_key_value, None
|
212 |
-
|
213 |
-
|
214 |
-
def check_valid_inputs(*tensors, valid_dtypes=[torch.float16, torch.bfloat16]):
|
215 |
-
for tensor in tensors:
|
216 |
-
if tensor.dtype not in valid_dtypes:
|
217 |
-
raise TypeError(f'{tensor.dtype=} must be in {valid_dtypes=}.')
|
218 |
-
if not tensor.is_cuda:
|
219 |
-
raise TypeError(f'Inputs must be cuda tensors ({tensor.is_cuda=}).')
|
220 |
-
|
221 |
-
|
222 |
-
def flash_attn_fn(
|
223 |
-
query,
|
224 |
-
key,
|
225 |
-
value,
|
226 |
-
n_heads,
|
227 |
-
past_key_value=None,
|
228 |
-
softmax_scale=None,
|
229 |
-
attn_bias=None,
|
230 |
-
key_padding_mask=None,
|
231 |
-
is_causal=False,
|
232 |
-
dropout_p=0.0,
|
233 |
-
training=False,
|
234 |
-
needs_weights=False,
|
235 |
-
multiquery=False,
|
236 |
-
):
|
237 |
-
try:
|
238 |
-
from flash_attn import bert_padding, flash_attn_interface # type: ignore # yapf: disable # isort: skip
|
239 |
-
except:
|
240 |
-
raise RuntimeError('Please install flash-attn==1.0.3.post0')
|
241 |
-
|
242 |
-
check_valid_inputs(query, key, value)
|
243 |
-
|
244 |
-
if past_key_value is not None:
|
245 |
-
if len(past_key_value) != 0:
|
246 |
-
key = torch.cat([past_key_value[0], key], dim=1)
|
247 |
-
value = torch.cat([past_key_value[1], value], dim=1)
|
248 |
-
|
249 |
-
past_key_value = (key, value)
|
250 |
-
|
251 |
-
if attn_bias is not None:
|
252 |
-
# clamp to 0 necessary for torch 2.0 compile()
|
253 |
-
_s_q = max(0, attn_bias.size(2) - query.size(1))
|
254 |
-
_s_k = max(0, attn_bias.size(3) - key.size(1))
|
255 |
-
attn_bias = attn_bias[:, :, _s_q:, _s_k:]
|
256 |
-
|
257 |
-
if attn_bias is not None:
|
258 |
-
raise NotImplementedError(f'attn_bias not implemented for flash attn.')
|
259 |
-
|
260 |
-
batch_size, seqlen = query.shape[:2]
|
261 |
-
|
262 |
-
if key_padding_mask is None:
|
263 |
-
key_padding_mask = torch.ones_like(key[:, :, 0], dtype=torch.bool)
|
264 |
-
query_padding_mask = key_padding_mask[:, -query.size(1):]
|
265 |
-
|
266 |
-
query_unpad, indices_q, cu_seqlens_q, max_seqlen_q = bert_padding.unpad_input(
|
267 |
-
query, query_padding_mask)
|
268 |
-
query_unpad = rearrange(query_unpad, 'nnz (h d) -> nnz h d', h=n_heads)
|
269 |
-
|
270 |
-
key_unpad, _, cu_seqlens_k, max_seqlen_k = bert_padding.unpad_input(
|
271 |
-
key, key_padding_mask)
|
272 |
-
key_unpad = rearrange(key_unpad,
|
273 |
-
'nnz (h d) -> nnz h d',
|
274 |
-
h=1 if multiquery else n_heads)
|
275 |
-
|
276 |
-
value_unpad, _, _, _ = bert_padding.unpad_input(value, key_padding_mask)
|
277 |
-
value_unpad = rearrange(value_unpad,
|
278 |
-
'nnz (h d) -> nnz h d',
|
279 |
-
h=1 if multiquery else n_heads)
|
280 |
-
|
281 |
-
if multiquery:
|
282 |
-
# Expanding a tensor does not allocate new memory, but only creates a new
|
283 |
-
# view on the existing tensor where a dimension of size one is expanded
|
284 |
-
# to a larger size by setting the stride to 0.
|
285 |
-
# - pytorch docs
|
286 |
-
#
|
287 |
-
# hopefully the kernels can utilize this and we're jot just wasting BW here
|
288 |
-
key_unpad = key_unpad.expand(key_unpad.size(0), n_heads,
|
289 |
-
key_unpad.size(-1))
|
290 |
-
value_unpad = value_unpad.expand(value_unpad.size(0), n_heads,
|
291 |
-
value_unpad.size(-1))
|
292 |
-
|
293 |
-
dropout_p = dropout_p if training else 0.0
|
294 |
-
|
295 |
-
reset_is_causal = _reset_is_causal(query.size(1), key.size(1), is_causal)
|
296 |
-
|
297 |
-
output_unpad = flash_attn_interface.flash_attn_unpadded_func(
|
298 |
-
query_unpad,
|
299 |
-
key_unpad,
|
300 |
-
value_unpad,
|
301 |
-
cu_seqlens_q,
|
302 |
-
cu_seqlens_k,
|
303 |
-
max_seqlen_q,
|
304 |
-
max_seqlen_k,
|
305 |
-
dropout_p,
|
306 |
-
softmax_scale=softmax_scale,
|
307 |
-
causal=reset_is_causal,
|
308 |
-
return_attn_probs=needs_weights)
|
309 |
-
|
310 |
-
output = bert_padding.pad_input(
|
311 |
-
rearrange(output_unpad, 'nnz h d -> nnz (h d)'), indices_q, batch_size,
|
312 |
-
seqlen)
|
313 |
-
return output, None, past_key_value
|
314 |
-
|
315 |
-
|
316 |
-
def triton_flash_attn_fn(
|
317 |
-
query,
|
318 |
-
key,
|
319 |
-
value,
|
320 |
-
n_heads,
|
321 |
-
past_key_value=None,
|
322 |
-
softmax_scale=None,
|
323 |
-
attn_bias=None,
|
324 |
-
key_padding_mask=None,
|
325 |
-
is_causal=False,
|
326 |
-
dropout_p=0.0,
|
327 |
-
training=False,
|
328 |
-
needs_weights=False,
|
329 |
-
multiquery=False,
|
330 |
-
):
|
331 |
-
try:
|
332 |
-
from llmfoundry.models.layers.flash_attn_triton import flash_attn_func
|
333 |
-
except:
|
334 |
-
_installed = False
|
335 |
-
if version.parse(torch.__version__) < version.parse('2.0.0'):
|
336 |
-
_installed = True
|
337 |
-
# if torch1.13.1 revert to using triton flash attn from HazyResearch
|
338 |
-
# with flash-attn==1.0.3.post0 and triton==2.0.0.dev20221202
|
339 |
-
try:
|
340 |
-
from flash_attn.flash_attn_triton import flash_attn_func
|
341 |
-
except:
|
342 |
-
_installed = False
|
343 |
-
if not _installed:
|
344 |
-
# installing triton-pre-mlir works for both torch1.13.1 and torch2.0+
|
345 |
-
# default recommendation is to install this variant
|
346 |
-
raise RuntimeError(
|
347 |
-
'Requirements for `attn_impl: triton` not installed. Either (1) have a CUDA-compatible GPU '
|
348 |
-
'and `pip install .[gpu]` if installing from llm-foundry source or '
|
349 |
-
'`pip install triton-pre-mlir@git+https://github.com/vchiley/triton.git@triton_pre_mlir#subdirectory=python` '
|
350 |
-
'if installing from pypi, or (2) use torch attn model.attn_config.attn_impl=torch (torch attn_impl will be slow). '
|
351 |
-
'Note: (1) requires you have CMake and PyTorch already installed.'
|
352 |
-
)
|
353 |
-
|
354 |
-
check_valid_inputs(query, key, value)
|
355 |
-
|
356 |
-
if past_key_value is not None:
|
357 |
-
if len(past_key_value) != 0:
|
358 |
-
key = torch.cat([past_key_value[0], key], dim=1)
|
359 |
-
value = torch.cat([past_key_value[1], value], dim=1)
|
360 |
-
|
361 |
-
past_key_value = (key, value)
|
362 |
-
|
363 |
-
if attn_bias is not None:
|
364 |
-
# clamp to 0 necessary for torch 2.0 compile()
|
365 |
-
_s_q = max(0, attn_bias.size(2) - query.size(1))
|
366 |
-
_s_k = max(0, attn_bias.size(3) - key.size(1))
|
367 |
-
attn_bias = attn_bias[:, :, _s_q:, _s_k:]
|
368 |
-
|
369 |
-
if dropout_p:
|
370 |
-
raise NotImplementedError(
|
371 |
-
f'Dropout not implemented for attn_impl: triton.')
|
372 |
-
|
373 |
-
if needs_weights:
|
374 |
-
raise NotImplementedError(
|
375 |
-
f'attn_impl: triton cannot return attn weights.')
|
376 |
-
|
377 |
-
if key_padding_mask is not None:
|
378 |
-
warnings.warn(
|
379 |
-
'Propagating key_padding_mask to the attention module ' +\
|
380 |
-
'and applying it within the attention module can cause ' +\
|
381 |
-
'unnecessary computation/memory usage. Consider integrating ' +\
|
382 |
-
'into attn_bias once and passing that to each attention ' +\
|
383 |
-
'module instead.'
|
384 |
-
)
|
385 |
-
b_size, s_k = key_padding_mask.shape[:2]
|
386 |
-
|
387 |
-
if attn_bias is None:
|
388 |
-
attn_bias = query.new_zeros(b_size, 1, 1, s_k)
|
389 |
-
|
390 |
-
attn_bias = attn_bias.masked_fill(
|
391 |
-
~key_padding_mask.view((b_size, 1, 1, s_k)),
|
392 |
-
torch.finfo(query.dtype).min)
|
393 |
-
|
394 |
-
query = rearrange(query, 'b s (h d) -> b s h d', h=n_heads)
|
395 |
-
key = rearrange(key, 'b s (h d) -> b s h d', h=1 if multiquery else n_heads)
|
396 |
-
value = rearrange(value,
|
397 |
-
'b s (h d) -> b s h d',
|
398 |
-
h=1 if multiquery else n_heads)
|
399 |
-
|
400 |
-
if multiquery:
|
401 |
-
# Expanding a tensor does not allocate new memory, but only creates a new
|
402 |
-
# view on the existing tensor where a dimension of size one is expanded
|
403 |
-
# to a larger size by setting the stride to 0.
|
404 |
-
# - pytorch docs
|
405 |
-
#
|
406 |
-
# hopefully the kernels can utilize this and we're jot just wasting BW here
|
407 |
-
key = key.expand(*key.shape[:2], n_heads, key.size(-1))
|
408 |
-
value = value.expand(*value.shape[:2], n_heads, value.size(-1))
|
409 |
-
|
410 |
-
reset_is_causal = _reset_is_causal(query.size(1), key.size(1), is_causal)
|
411 |
-
attn_output = flash_attn_func(query, key, value, attn_bias, reset_is_causal,
|
412 |
-
softmax_scale)
|
413 |
-
|
414 |
-
output = attn_output.view(*attn_output.shape[:2], -1)
|
415 |
-
|
416 |
-
return output, None, past_key_value
|
417 |
-
|
418 |
-
|
419 |
-
class MultiheadAttention(nn.Module):
|
420 |
-
"""Multi-head self attention.
|
421 |
-
|
422 |
-
Using torch or triton attention implemetation enables user to also use
|
423 |
-
additive bias.
|
424 |
-
"""
|
425 |
-
|
426 |
-
def __init__(
|
427 |
-
self,
|
428 |
-
d_model: int,
|
429 |
-
n_heads: int,
|
430 |
-
attn_impl: str = 'triton',
|
431 |
-
clip_qkv: Optional[float] = None,
|
432 |
-
qk_ln: bool = False,
|
433 |
-
softmax_scale: Optional[float] = None,
|
434 |
-
attn_pdrop: float = 0.0,
|
435 |
-
low_precision_layernorm: bool = False,
|
436 |
-
verbose: int = 0,
|
437 |
-
device: Optional[str] = None,
|
438 |
-
):
|
439 |
-
super().__init__()
|
440 |
-
|
441 |
-
self.attn_impl = attn_impl
|
442 |
-
self.clip_qkv = clip_qkv
|
443 |
-
self.qk_ln = qk_ln
|
444 |
-
|
445 |
-
self.d_model = d_model
|
446 |
-
self.n_heads = n_heads
|
447 |
-
self.softmax_scale = softmax_scale
|
448 |
-
if self.softmax_scale is None:
|
449 |
-
self.softmax_scale = 1 / math.sqrt(self.d_model / self.n_heads)
|
450 |
-
self.attn_dropout_p = attn_pdrop
|
451 |
-
|
452 |
-
self.Wqkv = nn.Linear(self.d_model, 3 * self.d_model, device=device)
|
453 |
-
# for param init fn; enables shape based init of fused layers
|
454 |
-
fuse_splits = (d_model, 2 * d_model)
|
455 |
-
self.Wqkv._fused = (0, fuse_splits) # type: ignore
|
456 |
-
|
457 |
-
if self.qk_ln:
|
458 |
-
layernorm_class = LPLayerNorm if low_precision_layernorm else nn.LayerNorm
|
459 |
-
self.q_ln = layernorm_class(self.d_model, device=device)
|
460 |
-
self.k_ln = layernorm_class(self.d_model, device=device)
|
461 |
-
|
462 |
-
if self.attn_impl == 'flash':
|
463 |
-
self.attn_fn = flash_attn_fn
|
464 |
-
elif self.attn_impl == 'triton':
|
465 |
-
self.attn_fn = triton_flash_attn_fn
|
466 |
-
if verbose:
|
467 |
-
warnings.warn(
|
468 |
-
'While `attn_impl: triton` can be faster than `attn_impl: flash` ' +\
|
469 |
-
'it uses more memory. When training larger models this can trigger ' +\
|
470 |
-
'alloc retries which hurts performance. If encountered, we recommend ' +\
|
471 |
-
'using `attn_impl: flash` if your model does not use `alibi` or `prefix_lm`.'
|
472 |
-
)
|
473 |
-
elif self.attn_impl == 'torch':
|
474 |
-
self.attn_fn = scaled_multihead_dot_product_attention
|
475 |
-
if torch.cuda.is_available() and verbose:
|
476 |
-
warnings.warn(
|
477 |
-
'Using `attn_impl: torch`. If your model does not use `alibi` or ' +\
|
478 |
-
'`prefix_lm` we recommend using `attn_impl: flash` otherwise ' +\
|
479 |
-
'we recommend using `attn_impl: triton`.'
|
480 |
-
)
|
481 |
-
else:
|
482 |
-
raise ValueError(f'{attn_impl=} is an invalid setting.')
|
483 |
-
|
484 |
-
self.out_proj = nn.Linear(self.d_model, self.d_model, device=device)
|
485 |
-
self.out_proj._is_residual = True # type: ignore
|
486 |
-
|
487 |
-
def forward(
|
488 |
-
self,
|
489 |
-
x,
|
490 |
-
past_key_value=None,
|
491 |
-
long_range_past_key_value=None,
|
492 |
-
attn_bias=None,
|
493 |
-
attn_bias_ae=None,
|
494 |
-
attention_mask=None,
|
495 |
-
is_causal=True,
|
496 |
-
needs_weights=False,
|
497 |
-
topk=None,
|
498 |
-
faiss_indexes=None,
|
499 |
-
n_layers=None,
|
500 |
-
current_layer=None,
|
501 |
-
mask_by_sim=None,
|
502 |
-
sim_threshold=None
|
503 |
-
):
|
504 |
-
qkv = self.Wqkv(x)
|
505 |
-
|
506 |
-
if self.clip_qkv:
|
507 |
-
qkv.clamp_(min=-self.clip_qkv, max=self.clip_qkv)
|
508 |
-
|
509 |
-
query, key, value = qkv.chunk(3, dim=2)
|
510 |
-
|
511 |
-
key_padding_mask = attention_mask
|
512 |
-
|
513 |
-
if self.qk_ln:
|
514 |
-
# Applying layernorm to qk
|
515 |
-
dtype = query.dtype
|
516 |
-
query = self.q_ln(query).to(dtype)
|
517 |
-
key = self.k_ln(key).to(dtype)
|
518 |
-
|
519 |
-
context, attn_weights, past_key_value, reshaped_idx = self.attn_fn(
|
520 |
-
query,
|
521 |
-
key,
|
522 |
-
value,
|
523 |
-
self.n_heads,
|
524 |
-
past_key_value=past_key_value,
|
525 |
-
long_range_past_key_value=long_range_past_key_value,
|
526 |
-
softmax_scale=self.softmax_scale,
|
527 |
-
attn_bias=attn_bias,
|
528 |
-
attn_bias_ae=attn_bias_ae,
|
529 |
-
key_padding_mask=key_padding_mask,
|
530 |
-
is_causal=is_causal,
|
531 |
-
dropout_p=self.attn_dropout_p,
|
532 |
-
training=self.training,
|
533 |
-
needs_weights=needs_weights,
|
534 |
-
topk=topk,
|
535 |
-
faiss_indexes=faiss_indexes,
|
536 |
-
n_layers=n_layers,
|
537 |
-
current_layer=current_layer,
|
538 |
-
mask_by_sim=mask_by_sim,
|
539 |
-
sim_threshold=sim_threshold
|
540 |
-
)
|
541 |
-
|
542 |
-
return self.out_proj(context), attn_weights, past_key_value, reshaped_idx
|
543 |
-
|
544 |
-
|
545 |
-
class MultiQueryAttention(nn.Module):
|
546 |
-
"""Multi-Query self attention.
|
547 |
-
|
548 |
-
Using torch or triton attention implemetation enables user to also use
|
549 |
-
additive bias.
|
550 |
-
"""
|
551 |
-
|
552 |
-
def __init__(
|
553 |
-
self,
|
554 |
-
d_model: int,
|
555 |
-
n_heads: int,
|
556 |
-
attn_impl: str = 'triton',
|
557 |
-
clip_qkv: Optional[float] = None,
|
558 |
-
qk_ln: bool = False,
|
559 |
-
softmax_scale: Optional[float] = None,
|
560 |
-
attn_pdrop: float = 0.0,
|
561 |
-
low_precision_layernorm: bool = False,
|
562 |
-
verbose: int = 0,
|
563 |
-
device: Optional[str] = None,
|
564 |
-
):
|
565 |
-
super().__init__()
|
566 |
-
|
567 |
-
self.attn_impl = attn_impl
|
568 |
-
self.clip_qkv = clip_qkv
|
569 |
-
self.qk_ln = qk_ln
|
570 |
-
|
571 |
-
self.d_model = d_model
|
572 |
-
self.n_heads = n_heads
|
573 |
-
self.head_dim = d_model // n_heads
|
574 |
-
self.softmax_scale = softmax_scale
|
575 |
-
if self.softmax_scale is None:
|
576 |
-
self.softmax_scale = 1 / math.sqrt(self.head_dim)
|
577 |
-
self.attn_dropout_p = attn_pdrop
|
578 |
-
|
579 |
-
# NOTE: if we ever want to make attn TensorParallel, I'm pretty sure we'll
|
580 |
-
# want to split Wqkv into Wq and Wkv where Wq can be TensorParallel but
|
581 |
-
# Wkv shouldn't be TensorParallel
|
582 |
-
# - vchiley
|
583 |
-
self.Wqkv = nn.Linear(
|
584 |
-
d_model,
|
585 |
-
d_model + 2 * self.head_dim,
|
586 |
-
device=device,
|
587 |
-
)
|
588 |
-
# for param init fn; enables shape based init of fused layers
|
589 |
-
fuse_splits = (d_model, d_model + self.head_dim)
|
590 |
-
self.Wqkv._fused = (0, fuse_splits) # type: ignore
|
591 |
-
|
592 |
-
if self.qk_ln:
|
593 |
-
layernorm_class = LPLayerNorm if low_precision_layernorm else nn.LayerNorm
|
594 |
-
self.q_ln = layernorm_class(d_model, device=device)
|
595 |
-
self.k_ln = layernorm_class(self.head_dim, device=device)
|
596 |
-
|
597 |
-
if self.attn_impl == 'flash':
|
598 |
-
self.attn_fn = flash_attn_fn
|
599 |
-
elif self.attn_impl == 'triton':
|
600 |
-
self.attn_fn = triton_flash_attn_fn
|
601 |
-
if verbose:
|
602 |
-
warnings.warn(
|
603 |
-
'While `attn_impl: triton` can be faster than `attn_impl: flash` ' +\
|
604 |
-
'it uses more memory. When training larger models this can trigger ' +\
|
605 |
-
'alloc retries which hurts performance. If encountered, we recommend ' +\
|
606 |
-
'using `attn_impl: flash` if your model does not use `alibi` or `prefix_lm`.'
|
607 |
-
)
|
608 |
-
elif self.attn_impl == 'torch':
|
609 |
-
self.attn_fn = scaled_multihead_dot_product_attention
|
610 |
-
if torch.cuda.is_available() and verbose:
|
611 |
-
warnings.warn(
|
612 |
-
'Using `attn_impl: torch`. If your model does not use `alibi` or ' +\
|
613 |
-
'`prefix_lm` we recommend using `attn_impl: flash` otherwise ' +\
|
614 |
-
'we recommend using `attn_impl: triton`.'
|
615 |
-
)
|
616 |
-
else:
|
617 |
-
raise ValueError(f'{attn_impl=} is an invalid setting.')
|
618 |
-
|
619 |
-
self.out_proj = nn.Linear(self.d_model, self.d_model, device=device)
|
620 |
-
self.out_proj._is_residual = True # type: ignore
|
621 |
-
|
622 |
-
def forward(
|
623 |
-
self,
|
624 |
-
x,
|
625 |
-
past_key_value=None,
|
626 |
-
attn_bias=None,
|
627 |
-
attention_mask=None,
|
628 |
-
is_causal=True,
|
629 |
-
needs_weights=False,
|
630 |
-
):
|
631 |
-
qkv = self.Wqkv(x)
|
632 |
-
|
633 |
-
if self.clip_qkv:
|
634 |
-
qkv.clamp_(min=-self.clip_qkv, max=self.clip_qkv)
|
635 |
-
|
636 |
-
query, key, value = qkv.split(
|
637 |
-
[self.d_model, self.head_dim, self.head_dim], dim=2)
|
638 |
-
|
639 |
-
key_padding_mask = attention_mask
|
640 |
-
|
641 |
-
if self.qk_ln:
|
642 |
-
# Applying layernorm to qk
|
643 |
-
dtype = query.dtype
|
644 |
-
query = self.q_ln(query).to(dtype)
|
645 |
-
key = self.k_ln(key).to(dtype)
|
646 |
-
|
647 |
-
context, attn_weights, past_key_value = self.attn_fn(
|
648 |
-
query,
|
649 |
-
key,
|
650 |
-
value,
|
651 |
-
self.n_heads,
|
652 |
-
past_key_value=past_key_value,
|
653 |
-
softmax_scale=self.softmax_scale,
|
654 |
-
attn_bias=attn_bias,
|
655 |
-
key_padding_mask=key_padding_mask,
|
656 |
-
is_causal=is_causal,
|
657 |
-
dropout_p=self.attn_dropout_p,
|
658 |
-
training=self.training,
|
659 |
-
needs_weights=needs_weights,
|
660 |
-
multiquery=True,
|
661 |
-
)
|
662 |
-
|
663 |
-
return self.out_proj(context), attn_weights, past_key_value
|
664 |
-
|
665 |
-
|
666 |
-
def attn_bias_shape(attn_impl, n_heads, seq_len, alibi, prefix_lm, causal,
|
667 |
-
use_sequence_id):
|
668 |
-
if attn_impl == 'flash':
|
669 |
-
return None
|
670 |
-
elif attn_impl in ['torch', 'triton']:
|
671 |
-
if alibi:
|
672 |
-
if (prefix_lm or not causal) or use_sequence_id:
|
673 |
-
return (1, n_heads, seq_len, seq_len)
|
674 |
-
return (1, n_heads, 1, seq_len)
|
675 |
-
elif prefix_lm or use_sequence_id:
|
676 |
-
return (1, 1, seq_len, seq_len)
|
677 |
-
return None
|
678 |
-
else:
|
679 |
-
raise ValueError(f'{attn_impl=} is an invalid setting.')
|
680 |
-
|
681 |
-
|
682 |
-
def build_attn_bias(
|
683 |
-
attn_impl,
|
684 |
-
n_heads,
|
685 |
-
seq_len,
|
686 |
-
attn_bias=None,
|
687 |
-
causal=False,
|
688 |
-
alibi=False,
|
689 |
-
alibi_bias_max=8,
|
690 |
-
for_ae=False,
|
691 |
-
topk=0,
|
692 |
-
device=None,
|
693 |
-
dtype=None
|
694 |
-
):
|
695 |
-
if attn_impl == 'flash':
|
696 |
-
return None
|
697 |
-
elif attn_impl in ['torch', 'triton']:
|
698 |
-
if alibi:
|
699 |
-
# in place add alibi to attn bias
|
700 |
-
if attn_bias is not None:
|
701 |
-
attn_bias = attn_bias.add(
|
702 |
-
build_alibi_bias(
|
703 |
-
n_heads,
|
704 |
-
seq_len,
|
705 |
-
full=not causal,
|
706 |
-
alibi_bias_max=alibi_bias_max,
|
707 |
-
device=device,
|
708 |
-
dtype=dtype,
|
709 |
-
for_ae=for_ae,
|
710 |
-
topk=topk
|
711 |
-
))
|
712 |
-
else: #for memories
|
713 |
-
attn_bias = build_alibi_bias(
|
714 |
-
n_heads,
|
715 |
-
seq_len,
|
716 |
-
full=not causal,
|
717 |
-
alibi_bias_max=alibi_bias_max,
|
718 |
-
for_ae=for_ae,
|
719 |
-
topk=topk)
|
720 |
-
return attn_bias
|
721 |
-
|
722 |
-
|
723 |
-
def gen_slopes(n_heads, alibi_bias_max=8, device=None):
|
724 |
-
_n_heads = 2**math.ceil(math.log2(n_heads))
|
725 |
-
m = torch.arange(1, _n_heads + 1, dtype=torch.float32, device=device)
|
726 |
-
m = m.mul(alibi_bias_max / _n_heads)
|
727 |
-
slopes = (1. / torch.pow(2, m))
|
728 |
-
|
729 |
-
if _n_heads != n_heads:
|
730 |
-
# if n_heads is not a power of two,
|
731 |
-
# Huggingface and FasterTransformer calculate slopes normally,
|
732 |
-
# then return this strided concatenation of slopes
|
733 |
-
slopes = torch.concat([slopes[1::2], slopes[::2]])[:n_heads]
|
734 |
-
|
735 |
-
return slopes.view(1, n_heads, 1, 1)
|
736 |
-
|
737 |
-
|
738 |
-
def build_alibi_bias(
|
739 |
-
n_heads,
|
740 |
-
seq_len,
|
741 |
-
full=False,
|
742 |
-
alibi_bias_max=8,
|
743 |
-
device=None,
|
744 |
-
dtype=None,
|
745 |
-
for_ae=False,
|
746 |
-
topk=0
|
747 |
-
):
|
748 |
-
if not for_ae:
|
749 |
-
alibi_bias = torch.arange(1 - seq_len, 1, dtype=torch.int32,
|
750 |
-
device=device).view(1, 1, 1, seq_len)
|
751 |
-
else:
|
752 |
-
alibi_bias = torch.tensor(-seq_len, dtype=torch.int32,
|
753 |
-
device=device).repeat(seq_len*topk).view(1, 1, 1, seq_len*(topk))
|
754 |
-
if full:
|
755 |
-
# generate 1 x Heads x SeqLen x SeqLen alibi bias mask
|
756 |
-
# otherwise the mask is 1 x Heads x 1 x SeqLen (which is broadcast to the appropriate size)
|
757 |
-
alibi_bias = alibi_bias - torch.arange(
|
758 |
-
1 - seq_len, 1, dtype=torch.int32, device=device).view(
|
759 |
-
1, 1, seq_len, 1)
|
760 |
-
alibi_bias = alibi_bias.abs().mul(-1)
|
761 |
-
|
762 |
-
slopes = gen_slopes(n_heads, alibi_bias_max, device=device)
|
763 |
-
alibi_bias = alibi_bias * slopes
|
764 |
-
return alibi_bias.to(dtype=dtype)
|
765 |
-
|
766 |
-
|
767 |
-
ATTN_CLASS_REGISTRY = {
|
768 |
-
'multihead_attention': MultiheadAttention,
|
769 |
-
'multiquery_attention': MultiQueryAttention,
|
770 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|