File size: 2,369 Bytes
5cda481 97971e7 0736294 97971e7 0736294 97971e7 0736294 97971e7 0736294 97971e7 0736294 5cda481 97971e7 5cda481 97971e7 5cda481 97971e7 5cda481 97971e7 5cda481 97971e7 5cda481 97971e7 5cda481 97971e7 5cda481 97971e7 5cda481 97971e7 5cda481 97971e7 5cda481 97971e7 5cda481 97971e7 5cda481 97971e7 5cda481 97971e7 5cda481 97971e7 5cda481 97971e7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 |
---
base_model: cpierse/wav2vec2-large-xlsr-53-esperanto
datasets:
- audiofolder
library_name: transformers
license: apache-2.0
metrics:
- wer
tags:
- generated_from_trainer
model-index:
- name: TrainEsperanto
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: audiofolder
type: audiofolder
config: default
split: None
args: default
metrics:
- type: wer
value: 0.1883670612192949
name: Wer
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# TrainEsperanto
This model is a fine-tuned version of [cpierse/wav2vec2-large-xlsr-53-esperanto](https://huggingface.co/cpierse/wav2vec2-large-xlsr-53-esperanto) on the audiofolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0591
- Wer: 0.1884
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-------:|:----:|:---------------:|:------:|
| 5.9902 | 2.6596 | 500 | 8.6294 | 1.0309 |
| 3.3 | 5.3191 | 1000 | 2.9688 | 1.0 |
| 2.8744 | 7.9787 | 1500 | 2.4117 | 1.0 |
| 0.7214 | 10.6383 | 2000 | 0.1825 | 0.2954 |
| 0.1552 | 13.2979 | 2500 | 0.0689 | 0.1971 |
| 0.1038 | 15.9574 | 3000 | 0.0621 | 0.1932 |
| 0.092 | 18.6170 | 3500 | 0.0624 | 0.1900 |
| 0.0877 | 21.2766 | 4000 | 0.0615 | 0.1926 |
| 0.082 | 23.9362 | 4500 | 0.0609 | 0.1899 |
| 0.0779 | 26.5957 | 5000 | 0.0591 | 0.1887 |
| 0.077 | 29.2553 | 5500 | 0.0591 | 0.1884 |
### Framework versions
- Transformers 4.45.2
- Pytorch 2.5.1
- Datasets 2.19.1
- Tokenizers 0.20.1
|