license: apache-2.0
language:
- nb
- nn
- 'no'
- se
- sv
- da
- en
- is
- fo
base_model:
- mistralai/Mistral-Nemo-Base-2407
library_name: transformers
NorMistral-11b-warm is a large Norwegian language model initialized from Mistral-Nemo-Base-2407 and continuously pretrained on a total of 260 billion subword tokens -- using a mix of Scandinavian, Sámi, English and code data (four repetitions of open Norwegian texts).
Disclaimer: This model is pretrained on raw (mostly web-based) textual data. It is not finetuned to follow instructions, and it can generate harmful completions after inappropriate user prompts. It is primarily intended for research purposes.
License
Here, we should probably discuss our understanding of the license
Tokenizer
This model uses a new tokenizer, specially trained on the target languages. Therefore it offers substantially faster inference than the original Mistral-Nemo-Base-2407 model. Here are the subword-to-word split ratios across different languages:
Tokenizer | # tokens | Bokmål | Nynorsk | Sámi | Danish | Swedish |
---|---|---|---|---|---|---|
Mistral-Nemo-Base-2407 | 131072 | 1.79 | 1.87 | 2.63 | 1.82 | 2.00 |
NorMistral-11b-warm | 51200 | 1.22 | 1.28 | 1.82 | 1.33 | 1.39 |
NorMistral-11b is also a bidirectional masked language model
Having been pretrained on a mixed causal-masked objective, this model knows how to process texts bidirectionally. You can thus finetune this model like any other BERT (or any other prefix language model). The model can also be used directly for masked language modeling:
from transformers import AutoTokenizer, AutoModelForCausalLM
# First, we will have to import the tokenizer and the language model
# we can use CausalLM instead of MaskedLM just fine
tokenizer = AutoTokenizer.from_pretrained(
"norallm/normistral-11b-warm"
)
model = AutoModelForCausalLM.from_pretrained(
"norallm/normistral-11b-warm"
).cuda().eval()
# A partially-masked input text string
text = "En søt lundefugl flyr over de<mask>norske fjorder."
input_ids = tokenizer(text, return_tensors='pt').input_ids.cuda()
# An empty attention mask allows uncontrained bidirectional attention
attention_mask = torch.zeros(input_ids.size(0), 1, input_ids.size(1), input_ids.size(1), device=input_ids.device)
output_logits = model(
input_ids=input_ids,
attention_mask=attention_mask,
return_dict=True
).logits
predictions = output_logits[0, :, :].argmax(dim=-1)
# Expected output:
# En søt lundefugl flyr over de<mask> norske fjorder. -> En søt lundefugl flyr over de vakre norske fjorder.
print(f"{tokenizer.decode(input_ids[0, 1:])} -> {tokenizer.decode(predictions[:-1])}")