nojuskybartas's picture
End of training
4fdc2ec verified
metadata
library_name: transformers
license: apache-2.0
base_model: ntu-spml/distilhubert
tags:
  - generated_from_trainer
datasets:
  - kim2024military
metrics:
  - accuracy
model-index:
  - name: distilhubert-finetuned-MAD
    results:
      - task:
          name: Audio Classification
          type: audio-classification
        dataset:
          name: MAD
          type: kim2024military
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8900675024108003

distilhubert-finetuned-MAD

This model is a fine-tuned version of ntu-spml/distilhubert on the MAD dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6123
  • Accuracy: 0.8901

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.624 1.0 402 0.6450 0.8245
0.425 2.0 804 0.4776 0.8708
0.0852 3.0 1206 0.5281 0.8698
0.2255 4.0 1608 0.7678 0.8650
0.0522 5.0 2010 1.0425 0.8814
0.2029 6.0 2412 1.3518 0.8930
0.0206 7.0 2814 1.5771 0.8939
0.0 8.0 3216 1.5804 0.8872
0.2069 9.0 3618 1.6365 0.8891
0.1882 10.0 4020 1.6123 0.8901

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.4.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3