File size: 2,463 Bytes
a4f2851 fd5b912 a4f2851 fd5b912 a4f2851 fd5b912 a4f2851 fd5b912 a4f2851 fd5b912 a4f2851 e6c60f5 a4f2851 fd5b912 a4f2851 fd5b912 a4f2851 e6c60f5 a4f2851 e6c60f5 a4f2851 e6c60f5 a4f2851 e6c60f5 a4f2851 e6c60f5 a4f2851 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
---
language:
- ja
license: other
tags:
- whisper-event
- generated_from_trainer
datasets:
- Elite35P-Server/EliteVoiceProject
metrics:
- wer
model-index:
- name: Whisper Base Japanese Elite
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Elite35P-Server/EliteVoiceProject twitter
type: Elite35P-Server/EliteVoiceProject
config: twitter
split: test
args: twitter
metrics:
- name: Wer
type: wer
value: 17.073170731707318
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Base Japanese Elite
This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the Elite35P-Server/EliteVoiceProject twitter dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4385
- Wer: 17.0732
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_steps: 200
- training_steps: 10000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:-----:|:---------------:|:-------:|
| 0.0002 | 111.0 | 1000 | 0.2155 | 9.7561 |
| 0.0001 | 222.0 | 2000 | 0.2448 | 12.1951 |
| 0.0 | 333.0 | 3000 | 0.2674 | 13.4146 |
| 0.0 | 444.0 | 4000 | 0.2943 | 15.8537 |
| 0.0 | 555.0 | 5000 | 0.3182 | 17.0732 |
| 0.0 | 666.0 | 6000 | 0.3501 | 18.9024 |
| 0.0 | 777.0 | 7000 | 0.3732 | 16.4634 |
| 0.0 | 888.0 | 8000 | 0.4025 | 17.0732 |
| 0.0 | 999.0 | 9000 | 0.4178 | 20.1220 |
| 0.0 | 1111.0 | 10000 | 0.4385 | 17.0732 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.1+cu117
- Datasets 2.8.1.dev0
- Tokenizers 0.13.2
|