poker-pretraining / README.md
nobody12321's picture
End of training
7365345 verified
|
raw
history blame
4.24 kB
metadata
base_model: nobody12321/poker-pretrain
tags:
  - generated_from_trainer
model-index:
  - name: poker-pretraining
    results: []

poker-pretraining

This model is a fine-tuned version of nobody12321/poker-pretrain on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.7246

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 1
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
2.651 0.0183 5000 2.3357
2.2946 0.0367 10000 2.2261
2.2212 0.0550 15000 2.1725
2.1702 0.0733 20000 2.1131
2.1332 0.0917 25000 2.0965
2.1062 0.1100 30000 2.0647
2.0854 0.1283 35000 2.0518
2.0688 0.1466 40000 2.0344
2.0556 0.1650 45000 2.0200
2.045 0.1833 50000 2.0177
2.0349 0.2016 55000 1.9994
2.0254 0.2200 60000 1.9950
2.0175 0.2383 65000 1.9861
2.0093 0.2566 70000 1.9792
2.0013 0.2750 75000 1.9761
1.9946 0.2933 80000 1.9676
1.988 0.3116 85000 1.9606
1.9817 0.3299 90000 1.9544
1.9729 0.3483 95000 1.9465
1.9662 0.3666 100000 1.9471
1.9597 0.3849 105000 1.9351
1.9532 0.4033 110000 1.9313
1.9475 0.4216 115000 1.9283
1.9407 0.4399 120000 1.9223
1.9356 0.4583 125000 1.9139
1.9308 0.4766 130000 1.9094
1.9244 0.4949 135000 1.9038
1.9194 0.5132 140000 1.8983
1.9134 0.5316 145000 1.8951
1.9093 0.5499 150000 1.8904
1.9038 0.5682 155000 1.8826
1.898 0.5866 160000 1.8776
1.8931 0.6049 165000 1.8738
1.8878 0.6232 170000 1.8685
1.882 0.6416 175000 1.8633
1.8755 0.6599 180000 1.8573
1.87 0.6782 185000 1.8517
1.8648 0.6965 190000 1.8465
1.8587 0.7149 195000 1.8407
1.8537 0.7332 200000 1.8346
1.8358 0.7515 205000 1.8094
1.8207 0.7699 210000 1.7976
1.8109 0.7882 215000 1.7890
1.8031 0.8065 220000 1.7788
1.7926 0.8249 225000 1.7671
1.7821 0.8432 230000 1.7571
1.7756 0.8615 235000 1.7497
1.7678 0.8799 240000 1.7423
1.7627 0.8982 245000 1.7366
1.7581 0.9165 250000 1.7317
1.7538 0.9348 255000 1.7286
1.7513 0.9532 260000 1.7262
1.75 0.9715 265000 1.7251
1.7492 0.9898 270000 1.7246

Framework versions

  • Transformers 4.40.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1