File size: 3,822 Bytes
777647c 8725d9f 777647c 63f95e6 8725d9f 63f95e6 8725d9f 63f95e6 8725d9f 63f95e6 8725d9f 63f95e6 8725d9f e1c8537 8725d9f e1c8537 8725d9f e1c8537 8725d9f e1c8537 8725d9f e1c8537 8725d9f 777647c 2d2a9e5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 |
---
license: apache-2.0
tags:
- qa
datasets:
- squad_v2
- natural_questions
model-index:
- name: nlpconnect/roberta-base-squad2-nq
results:
- task:
type: question-answering
name: Question Answering
dataset:
name: squad_v2
type: squad_v2
config: squad_v2
split: validation
metrics:
- type: exact_match
value: 80.3185
name: Exact Match
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOTlmNTE0N2U3MTA1MDY1ZGZjYTYxZGIwMWUwN2EzYWM1MzhhZDI2Y2FiZDcxYTk1YTkyYzcxNGViYTM4MTUxNCIsInZlcnNpb24iOjF9.QOTfyyo4ttC1iCceQM7fYeJG9u976t1rG8RM-UxTIORP_rJHgdoYymjpTd4aghwkxg6hn3jeSKqpR5qV__0MAg
- type: f1
value: 83.4669
name: F1
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMjg5NjgwZjVmNDZlYjYyOTlhZjgxNGJjYmMyMDUzZjQ1YTdhOWExZjVjMmE2YmJlMGUyZTQ5MzE3ZTUxMjY0ZCIsInZlcnNpb24iOjF9.qQ4U9ZwpqJeeU2lEWQ2bN_Ktq0kJbGEKjOq9liFy0_7EpTtYSc9Qzr64sJOO40fJ08Twe2At3weuz6aPgBQIDA
- task:
type: question-answering
name: Question Answering
dataset:
name: squad
type: squad
config: plain_text
split: validation
metrics:
- type: exact_match
value: 85.5666
name: Exact Match
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYmQzMzQzOTUwNjcwN2NjOGMwNDRiZmEwZTA4OGNhZGIzZjUzNmM5MzEzYWRmOTQwMzlhNDY3ZDllYWQ3Y2ZlYSIsInZlcnNpb24iOjF9.3t6pbSduzMYHZisQWgacYssbu3ver3Xmn9hIaRO-SlRw8qsBlE5z4xM8yo5fLluZy-o_mZ6Z5l31XWpGxcNvBw
- type: f1
value: 92.1939
name: F1
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYjEzZGYxODU4YWNlZmM5ZDE5ODBhZWUyMmZlN2I3MDNlMTlkYTU1M2ZiNjMwY2QyYzM4YWZiOGIzZGMzODcwZSIsInZlcnNpb24iOjF9.5wQliHDlVaZK_dIOcJYGKCo-DPtPcmpSlaf2E4EuQJcW23rNN2gci8_h_RS0ay-6m1MF-7BgsIeivlMDZgSKBQ
---
# Roberta-base-Squad2-NQ
## What is SQuAD?
Stanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by crowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span, from the corresponding reading passage, or the question might be unanswerable.
SQuAD2.0 combines the 100,000 questions in SQuAD1.1 with over 50,000 unanswerable questions written adversarially by crowdworkers to look similar to answerable ones. To do well on SQuAD2.0, systems must not only answer questions when possible, but also determine when no answer is supported by the paragraph and abstain from answering.
## The Natural Questions Dataset
To help spur development in open-domain question answering, we have created the Natural Questions (NQ) corpus, along with a challenge website based on this data. The NQ corpus contains questions from real users, and it requires QA systems to read and comprehend an entire Wikipedia article that may or may not contain the answer to the question. The inclusion of real user questions, and the requirement that solutions should read an entire page to find the answer, cause NQ to be a more realistic and challenging task than prior QA datasets.
## Training
Firstly, we took base roberta model and trained on SQuQD 2.0 dataset for 2 epoch and then after we took NQ Small answer and trained for 1 epoch.
Total Dataset Size: 204416 Examples from squadv2 and NQ Small answer dataset
## Evaluation
Eval Dataset: Squadv2 dev
```
{'exact': 80.2998399730481,
'f1': 83.4402145786235,
'total': 11873,
'HasAns_exact': 79.08232118758434,
'HasAns_f1': 85.37207619635592,
'HasAns_total': 5928,
'NoAns_exact': 81.5138772077376,
'NoAns_f1': 81.5138772077376,
'NoAns_total': 5945,
'best_exact': 80.2998399730481,
'best_exact_thresh': 0.0,
'best_f1': 83.44021457862335,
'best_f1_thresh': 0.0}
```
|