File size: 1,190 Bytes
9f16733 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
---
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
language: en
license: apache-2.0
datasets:
- s2orc
- flax-sentence-embeddings/stackexchange_xml
- ms_marco
- gooaq
- yahoo_answers_topics
- code_search_net
- search_qa
- eli5
- snli
- multi_nli
- wikihow
- natural_questions
- trivia_qa
- embedding-data/sentence-compression
- embedding-data/flickr30k-captions
- embedding-data/altlex
- embedding-data/simple-wiki
- embedding-data/QQP
- embedding-data/SPECTER
- embedding-data/PAQ_pairs
- embedding-data/WikiAnswers
---
# ONNX version of intfloat/multilingual-e5-base
This is a sentence-transformers model: It maps sentences & paragraphs to a N dimensional dense vector space and can be used for tasks like clustering or semantic search.
The model conversion was made with [onnx-convert](https://github.com/nixiesearch/onnx-convert) tool with the following parameters:
```shell
python convert.sh --model_id intfloat/multilingual-e5-base --quantize QInt8 --optimize 2
```
There are two versions of model available:
* `model.onnx` - Float32 version, with optimize=2
* `model_opt2_QInt8.onnx` - QInt8 quantized version, with optimize=2
## License
Apache 2.0 |