nishimura999's picture
Update README.md
cec4058 verified
|
raw
history blame
3.27 kB
metadata
base_model: llm-jp/llm-jp-3-13b
tags:
  - text-generation-inference
  - transformers
  - unsloth
  - llama
  - trl
license: apache-2.0
language:
  - ja
datasets:
  - kinokokoro/ichikara-instruction-003

Uploaded model

  • Developed by: nishimura999
  • License: apache-2.0
  • Finetuned from model : llm-jp/llm-jp-3-13b

This llama model was trained 2x faster with Unsloth and Huggingface's TRL library.

usage

-import

from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    BitsAndBytesConfig,
)
import torch
from tqdm import tqdm
import json

-setting

# Hugging Faceで取得したToken
HF_TOKEN = "{Your hugging face token}"

# モデルのID
model_name = "nishimura999/llm-jp-3-13b-finetune-v100"

-confing

# QLoRA config
bnb_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_compute_dtype=torch.bfloat16,
    bnb_4bit_use_double_quant=False,
)

-load

# Load model
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    quantization_config=bnb_config,
    device_map="auto",
    token = HF_TOKEN
)

# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True, token = HF_TOKEN)

-dataset

# データセットの読み込み。
datasets = []
with open("./elyza-tasks-100-TV_0.jsonl", "r") as f:
    item = ""
    for line in f:
      line = line.strip()
      item += line
      if item.endswith("}"):
        datasets.append(json.loads(item))
        item = ""

-generate

results = []
for data in tqdm(datasets):

  input = data["input"]

  prompt = f"""### 指示
  {input}
  ### 回答:
  """

  tokenized_input = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt").to(model.device)
  with torch.no_grad():
      outputs = model.generate(
          tokenized_input,
          max_new_tokens=100,
          do_sample=False,
          repetition_penalty=1.2
      )[0]
  output = tokenizer.decode(outputs[tokenized_input.size(1):], skip_special_tokens=True)

  results.append({"task_id": data["task_id"], "input": input, "output": output})

-output

import re
model_name = re.sub(".*/", "", model_name)
with open(f"./{model_name}-outputs.jsonl", 'w', encoding='utf-8') as f:
    for result in results:
        json.dump(result, f, ensure_ascii=False)  # ensure_ascii=False for handling non-ASCII characters
        f.write('\n')

ref

本モデルは下記のデータを使ってファインチューニングしております。ここでデータ提供者に感謝申し上げます。

(https://liat-aip.sakura.ne.jp/wp/llmのための日本語インストラクションデータ作成/llmのための日本語インストラクションデータ-公開/) 関根聡, 安藤まや, 後藤美知子, 鈴木久美, 河原大輔, 井之上直也, 乾健太郎. ichikara-instruction: LLMのための日本語インストラクションデータの構築. 言語処理学会第30回年次大会(2024)