File size: 1,764 Bytes
016ddea
 
b973ef4
 
 
 
 
 
 
016ddea
 
b973ef4
016ddea
b973ef4
016ddea
b973ef4
 
 
016ddea
 
 
b973ef4
 
 
 
016ddea
b973ef4
 
 
 
016ddea
b973ef4
 
 
 
 
 
016ddea
b973ef4
 
016ddea
b973ef4
016ddea
b973ef4
 
 
 
 
 
 
 
016ddea
b973ef4
016ddea
b973ef4
 
016ddea
 
 
 
b973ef4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
---
library_name: transformers
tags:
- medical
language:
- en
pipeline_tag: visual-question-answering
base_model: microsoft/Florence-2-base-ft
base_model_relation: finetune
---

# Model Description

The Florence-2_FT_Lung-Cancer-detection model is a fine-tuned version of the microsoft/Florence-2-base-ft model, tailored specifically for the task of lung cancer detection using lung images.

- **Developed by:** Nirusanan
- **License:** 
- **Finetuned from model:** microsoft/Florence-2-base-ft



## How to use
```python
! pip install -q "flash_attn==2.6.3" "timm==1.0.8" "einops==0.8.0" "transformers==4.44.0" 
```

```python
device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
```

```python
model = AutoModelForCausalLM.from_pretrained("nirusanan/Florence-2_FT_Lung-Cancer-detection", torch_dtype=torch_dtype, trust_remote_code=True).to(device)
processor = AutoProcessor.from_pretrained("nirusanan/Florence-2_FT_Lung-Cancer-detection", trust_remote_code=True)
```
```python
prompt = "<DocVQA>" + "What is the type of lung cancer?"

url = "https://www.uab.edu/news/images/ct_scan.jpg"
image = Image.open(requests.get(url, stream=True).raw)

inputs = processor(text=prompt, images=image, return_tensors="pt").to(device, torch_dtype)

generated_ids = model.generate(
    input_ids=inputs["input_ids"],
    pixel_values=inputs["pixel_values"],
    max_new_tokens=1024,
    do_sample=False,
    num_beams=3
)
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]

parsed_answer = processor.post_process_generation(generated_text, task="<DocVQA>", image_size=(image.width, image.height))

print(parsed_answer)
```


## Evaluation

Test Accuracy: 99.17%