File size: 7,962 Bytes
3d63c38 4c6b419 3d63c38 4c6b419 3d63c38 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
import chess
import chess.engine
import numpy as np
import tensorflow as tf
import time
import os
import datetime
import shutil # For zip creation
from google.colab import files # For download trigger
# --- 1. Neural Network (Policy and Value Network) ---
class PolicyValueNetwork(tf.keras.Model):
def __init__(self, num_moves):
super(PolicyValueNetwork, self).__init__()
self.conv1 = tf.keras.layers.Conv2D(32, 3, activation='relu', padding='same')
self.flatten = tf.keras.layers.Flatten()
self.dense_policy = tf.keras.layers.Dense(num_moves, activation='softmax', name='policy_head')
self.dense_value = tf.keras.layers.Dense(1, activation='tanh', name='value_head')
def call(self, inputs):
x = self.conv1(inputs)
x = self.flatten(x)
policy = self.dense_policy(x)
value = self.dense_value(x)
return policy, value
# --- 2. Move Encoding/Decoding (Correct and Deterministic Implementation) ---
NUM_POSSIBLE_MOVES = 4672 # Correct value based on deterministic encoding
NUM_INPUT_PLANES = 12
# Load model weights
policy_value_net = PolicyValueNetwork(NUM_POSSIBLE_MOVES)
# dummy input for building network
dummy_input = tf.random.normal((1, 8, 8, NUM_INPUT_PLANES))
policy, value = policy_value_net(dummy_input)
# Load the weights (replace 'your_model.weights.h5' with your actual file)
try:
model_path = "/content/models_colab/StockZero-2025-03-24-1727.weights.h5"
policy_value_net.load_weights(model_path)
print(f"Model weights loaded successfully from '{model_path}'")
except Exception as e:
print(f"Error loading weights: {e}")
# --- Create output directory and set output paths ---
OUTPUT_DIR = "/content/converted_models"
os.makedirs(OUTPUT_DIR, exist_ok=True) # Create the folder if it does not exist
SAVED_MODEL_DIR = os.path.join(OUTPUT_DIR, "saved_model")
KERAS_MODEL_PATH = os.path.join(OUTPUT_DIR, "model.keras")
H5_MODEL_PATH = os.path.join(OUTPUT_DIR, "model_weights.h5")
PYTORCH_MODEL_PATH = os.path.join(OUTPUT_DIR, "pytorch_model.pth")
PYTORCH_FULL_MODEL_PATH = os.path.join(OUTPUT_DIR, "pytorch_full_model.pth")
ONNX_MODEL_PATH = os.path.join(OUTPUT_DIR, "model.onnx")
TFLITE_MODEL_PATH = os.path.join(OUTPUT_DIR, "model.tflite")
BIN_FILE_PATH = os.path.join(OUTPUT_DIR, "model_weights.bin")
NUMPY_FILE_PATH = os.path.join(OUTPUT_DIR, "model_weights.npz")
# --- 1. Keras/TensorFlow (SavedModel format) ---
try:
tf.saved_model.save(policy_value_net, SAVED_MODEL_DIR)
print(f"Model saved as SavedModel to '{SAVED_MODEL_DIR}'")
except Exception as e:
print(f"Error saving model as SavedModel: {e}")
# --- 2. Keras .keras Format (Weights + Architecture) ---
try:
policy_value_net.save(KERAS_MODEL_PATH)
print(f"Model saved as Keras .keras format to '{KERAS_MODEL_PATH}'")
except Exception as e:
print(f"Error saving as .keras format: {e}")
# --- 3. Keras/TensorFlow (.h5 - Weights) ---
try:
policy_value_net.save_weights(H5_MODEL_PATH)
print(f"Model weights saved as .h5 to '{H5_MODEL_PATH}'")
except Exception as e:
print(f"Error saving model weights as .h5: {e}")
# --- 4. PyTorch ---
import torch
import torch.nn as nn
class PyTorchPolicyValueNetwork(nn.Module):
def __init__(self, num_moves):
super(PyTorchPolicyValueNetwork, self).__init__()
self.conv1 = nn.Conv2d(12, 32, kernel_size=3, padding=1) # Input 12 channels for chess
self.relu = nn.ReLU()
self.flatten = nn.Flatten()
self.dense_policy = nn.Linear(8*8*32, num_moves) # Calculate size using the parameters from keras layer, after flatten output is 8*8*32
self.softmax = nn.Softmax(dim=1)
self.dense_value = nn.Linear(8*8*32, 1)
self.tanh = nn.Tanh()
def forward(self, x):
x = self.relu(self.conv1(x))
x = self.flatten(x)
policy = self.softmax(self.dense_policy(x))
value = self.tanh(self.dense_value(x))
return policy, value
try:
pytorch_model = PyTorchPolicyValueNetwork(NUM_POSSIBLE_MOVES)
# Get Keras layers
keras_conv1 = policy_value_net.conv1
keras_dense_policy = policy_value_net.dense_policy
keras_dense_value = policy_value_net.dense_value
# Transfer weights from Keras to PyTorch
pytorch_model.conv1.weight = torch.nn.Parameter(torch.tensor(keras_conv1.kernel.numpy().transpose(3,2,0,1), dtype=torch.float32))
pytorch_model.conv1.bias = torch.nn.Parameter(torch.tensor(keras_conv1.bias.numpy(), dtype=torch.float32))
pytorch_model.dense_policy.weight = torch.nn.Parameter(torch.tensor(keras_dense_policy.kernel.numpy().transpose(), dtype=torch.float32))
pytorch_model.dense_policy.bias = torch.nn.Parameter(torch.tensor(keras_dense_policy.bias.numpy(), dtype=torch.float32))
pytorch_model.dense_value.weight = torch.nn.Parameter(torch.tensor(keras_dense_value.kernel.numpy().transpose(), dtype=torch.float32))
pytorch_model.dense_value.bias = torch.nn.Parameter(torch.tensor(keras_dense_value.bias.numpy(), dtype=torch.float32))
torch.save(pytorch_model.state_dict(), PYTORCH_MODEL_PATH)
print(f"PyTorch model weights saved to '{PYTORCH_MODEL_PATH}'")
torch.save(pytorch_model, PYTORCH_FULL_MODEL_PATH) # Save full model
print(f"PyTorch model saved as '{PYTORCH_FULL_MODEL_PATH}'")
except Exception as e:
print(f"Error during PyTorch conversion: {e}")
# --- 5. ONNX ---
import tf2onnx
try:
spec = (tf.TensorSpec((None, 8, 8, 12), tf.float32, name="input"),)
onnx_model, _ = tf2onnx.convert.from_keras(policy_value_net, input_signature=spec)
with open(ONNX_MODEL_PATH, "wb") as f:
f.write(onnx_model.SerializeToString())
print(f"Model saved as ONNX to '{ONNX_MODEL_PATH}'")
except Exception as e:
print(f"Error saving model as ONNX: {e}")
# --- 6. TensorFlow Lite ---
try:
converter = tf.lite.TFLiteConverter.from_keras_model(policy_value_net)
tflite_model = converter.convert()
with open(TFLITE_MODEL_PATH, 'wb') as f:
f.write(tflite_model)
print(f"Model saved as TFLite to '{TFLITE_MODEL_PATH}'")
except Exception as e:
print(f"Error converting to TFLite: {e}")
# --- 7. Binary (.bin) format (Custom Implementation) ---
try:
with open(BIN_FILE_PATH, 'wb') as f:
for layer in policy_value_net.layers:
for weight in layer.weights:
weight_arr = weight.numpy()
f.write(weight_arr.tobytes())
print(f"Model weights saved as .bin to '{BIN_FILE_PATH}'")
except Exception as e:
print(f"Error saving model weights as .bin: {e}")
# --- 8. NumPy arrays (.npz) format ---
try:
all_weights = {}
for layer in policy_value_net.layers:
for i, weight in enumerate(layer.weights):
all_weights[f"{layer.name}_weight_{i}"] = weight.numpy()
np.savez(NUMPY_FILE_PATH, **all_weights)
print(f"Model weights saved as NumPy arrays to '{NUMPY_FILE_PATH}'")
except Exception as e:
print(f"Error saving model weights as NumPy: {e}")
# --- 9. TensorFlow.js (requires command line tool)---
# --- This would require the TensorFlow.js converter tool ---
# --- Command-Line example shown below (run in shell, not in the script) ---
# --- tensorflowjs_converter --input_format=tf_saved_model ./saved_model ./tfjs_model ---
print("To convert to TensorFlow.js format, run the 'tensorflowjs_converter' command-line tool (see comments in script).")
# --- Zip all files and create download ---
try:
current_datetime = datetime.datetime.now()
zip_file_name = f"converted_models-{current_datetime.strftime('%Y%m%d%H%M')}"
zip_file_path = f"/content/{zip_file_name}"
shutil.make_archive(zip_file_path, 'zip', OUTPUT_DIR) # Create zip archive
print(f"All converted model files zipped to '{zip_file_path}.zip'")
files.download(f"{zip_file_path}.zip") # Trigger download in Colab
print("Download should start in a moment.")
except Exception as e:
print(f"Error zipping and creating download: {e}") |