File size: 8,108 Bytes
d3dbf03 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 |
# Copyright (c) OpenMMLab. All rights reserved.
import random
import numpy as np
import pytest
from numpy.testing import assert_array_almost_equal, assert_array_equal
from mmaction.evaluation.functional import (average_recall_at_avg_proposals,
confusion_matrix,
get_weighted_score,
pairwise_temporal_iou,
top_k_classes)
def test_top_k_accurate_classes():
scores = [
np.array([0.1, 0.2, 0.3, 0.4]), # 3
np.array([0.2, 0.3, 0.4, 0.1]), # 2
np.array([0.3, 0.4, 0.1, 0.2]), # 1
np.array([0.4, 0.1, 0.2, 0.3]), # 0
np.array([0.25, 0.1, 0.3, 0.35]), # 3
np.array([0.2, 0.15, 0.3, 0.35]), # 3
]
label = np.array([3, 2, 2, 1, 3, 3], dtype=np.int64)
with pytest.raises(AssertionError):
top_k_classes(scores, label, 1, mode='wrong')
results_top1 = top_k_classes(scores, label, 1)
results_top3 = top_k_classes(scores, label, 3)
assert len(results_top1) == 1
assert len(results_top3) == 3
assert results_top3[0] == results_top1[0]
assert results_top1 == [(3, 1.)]
assert results_top3 == [(3, 1.), (2, 0.5), (1, 0.0)]
label = np.array([3, 2, 1, 1, 3, 0], dtype=np.int64)
results_top1 = top_k_classes(scores, label, 1, mode='inaccurate')
results_top3 = top_k_classes(scores, label, 3, mode='inaccurate')
assert len(results_top1) == 1
assert len(results_top3) == 3
assert results_top3[0] == results_top1[0]
assert results_top1 == [(0, 0.)]
assert results_top3 == [(0, 0.0), (1, 0.5), (2, 1.0)]
def test_pairwise_temporal_iou():
target_segments = np.array([])
candidate_segments = np.array([])
with pytest.raises(ValueError):
pairwise_temporal_iou(target_segments, candidate_segments)
# test temporal iou
target_segments = np.array([[1, 2], [2, 3]])
candidate_segments = np.array([[2, 3], [2.5, 3]])
temporal_iou = pairwise_temporal_iou(candidate_segments, target_segments)
assert_array_equal(temporal_iou, [[0, 0], [1, 0.5]])
# test temporal overlap_self
target_segments = np.array([[1, 2], [2, 3]])
candidate_segments = np.array([[2, 3], [2.5, 3]])
temporal_iou, temporal_overlap_self = pairwise_temporal_iou(
candidate_segments, target_segments, calculate_overlap_self=True)
assert_array_equal(temporal_overlap_self, [[0, 0], [1, 1]])
# test temporal overlap_self when candidate_segments is 1d
target_segments = np.array([[1, 2], [2, 3]])
candidate_segments = np.array([2.5, 3])
temporal_iou, temporal_overlap_self = pairwise_temporal_iou(
candidate_segments, target_segments, calculate_overlap_self=True)
assert_array_equal(temporal_overlap_self, [0, 1])
def test_average_recall_at_avg_proposals():
ground_truth1 = {
'v_test1': np.array([[0, 1], [1, 2]]),
'v_test2': np.array([[0, 1], [1, 2]])
}
ground_truth2 = {'v_test1': np.array([[0, 1]])}
proposals1 = {
'v_test1': np.array([[0, 1, 1], [1, 2, 1]]),
'v_test2': np.array([[0, 1, 1], [1, 2, 1]])
}
proposals2 = {
'v_test1': np.array([[10, 11, 0.6], [11, 12, 0.4]]),
'v_test2': np.array([[10, 11, 0.6], [11, 12, 0.4]])
}
proposals3 = {
'v_test1': np.array([[i, i + 1, 1 / (i + 1)] for i in range(100)])
}
recall, avg_recall, proposals_per_video, auc = (
average_recall_at_avg_proposals(ground_truth1, proposals1, 4))
assert_array_equal(recall, [[0.] * 49 + [0.5] * 50 + [1.]] * 10)
assert_array_equal(avg_recall, [0.] * 49 + [0.5] * 50 + [1.])
assert_array_almost_equal(
proposals_per_video, np.arange(0.02, 2.02, 0.02), decimal=10)
assert auc == 25.5
recall, avg_recall, proposals_per_video, auc = (
average_recall_at_avg_proposals(ground_truth1, proposals2, 4))
assert_array_equal(recall, [[0.] * 100] * 10)
assert_array_equal(avg_recall, [0.] * 100)
assert_array_almost_equal(
proposals_per_video, np.arange(0.02, 2.02, 0.02), decimal=10)
assert auc == 0
recall, avg_recall, proposals_per_video, auc = (
average_recall_at_avg_proposals(ground_truth2, proposals3, 100))
assert_array_equal(recall, [[1.] * 100] * 10)
assert_array_equal(avg_recall, ([1.] * 100))
assert_array_almost_equal(
proposals_per_video, np.arange(1, 101, 1), decimal=10)
assert auc == 99.0
def test_get_weighted_score():
score_a = [
np.array([-0.2203, -0.7538, 1.8789, 0.4451, -0.2526]),
np.array([-0.0413, 0.6366, 1.1155, 0.3484, 0.0395]),
np.array([0.0365, 0.5158, 1.1067, -0.9276, -0.2124]),
np.array([0.6232, 0.9912, -0.8562, 0.0148, 1.6413])
]
score_b = [
np.array([-0.0413, 0.6366, 1.1155, 0.3484, 0.0395]),
np.array([0.0365, 0.5158, 1.1067, -0.9276, -0.2124]),
np.array([0.6232, 0.9912, -0.8562, 0.0148, 1.6413]),
np.array([-0.2203, -0.7538, 1.8789, 0.4451, -0.2526])
]
weighted_score = get_weighted_score([score_a], [1])
assert np.all(np.isclose(np.array(score_a), np.array(weighted_score)))
coeff_a, coeff_b = 2., 1.
weighted_score = get_weighted_score([score_a, score_b], [coeff_a, coeff_b])
ground_truth = [
x * coeff_a + y * coeff_b for x, y in zip(score_a, score_b)
]
assert np.all(np.isclose(np.array(ground_truth), np.array(weighted_score)))
def gt_confusion_matrix(gt_labels, pred_labels, normalize=None):
"""Calculate the ground truth confusion matrix."""
max_index = max(max(gt_labels), max(pred_labels))
confusion_mat = np.zeros((max_index + 1, max_index + 1), dtype=np.int64)
for gt, pred in zip(gt_labels, pred_labels):
confusion_mat[gt][pred] += 1
del_index = []
for i in range(max_index):
if sum(confusion_mat[i]) == 0 and sum(confusion_mat[:, i]) == 0:
del_index.append(i)
confusion_mat = np.delete(confusion_mat, del_index, axis=0)
confusion_mat = np.delete(confusion_mat, del_index, axis=1)
if normalize is not None:
confusion_mat = np.array(confusion_mat, dtype=np.float64)
m, n = confusion_mat.shape
if normalize == 'true':
for i in range(m):
s = np.sum(confusion_mat[i], dtype=float)
if s == 0:
continue
confusion_mat[i, :] = confusion_mat[i, :] / s
print(confusion_mat[i, :])
elif normalize == 'pred':
for i in range(n):
s = sum(confusion_mat[:, i])
if s == 0:
continue
confusion_mat[:, i] = confusion_mat[:, i] / s
elif normalize == 'all':
s = np.sum(confusion_mat)
if s != 0:
confusion_mat /= s
return confusion_mat
def test_confusion_matrix():
# custom confusion_matrix
gt_labels = [np.int64(random.randint(0, 9)) for _ in range(100)]
pred_labels = np.random.randint(10, size=100, dtype=np.int64)
for normalize in [None, 'true', 'pred', 'all']:
cf_mat = confusion_matrix(pred_labels, gt_labels, normalize)
gt_cf_mat = gt_confusion_matrix(gt_labels, pred_labels, normalize)
assert_array_equal(cf_mat, gt_cf_mat)
with pytest.raises(ValueError):
# normalize must be in ['true', 'pred', 'all', None]
confusion_matrix([1], [1], 'unsupport')
with pytest.raises(TypeError):
# y_pred must be list or np.ndarray
confusion_matrix(0.5, [1])
with pytest.raises(TypeError):
# y_real must be list or np.ndarray
confusion_matrix([1], 0.5)
with pytest.raises(TypeError):
# y_pred dtype must be np.int64
confusion_matrix([0.5], [1])
with pytest.raises(TypeError):
# y_real dtype must be np.int64
confusion_matrix([1], [0.5])
|