File size: 27,459 Bytes
d3dbf03 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 |
# A 20-Minute Guide to MMAction2 FrameWork
In this tutorial, we will demonstrate the overall architecture of our `MMACTION2 1.0` through a step-by-step example of video action recognition.
The structure of this tutorial is as follows:
- [A 20-Minute Guide to MMAction2 FrameWork](#a-20-minute-guide-to-mmaction2-framework)
- [Step0: Prepare Data](#step0-prepare-data)
- [Step1: Build a Pipeline](#step1-build-a-pipeline)
- [Step2: Build a Dataset and DataLoader](#step2-build-a-dataset-and-dataloader)
- [Step3: Build a Recognizer](#step3-build-a-recognizer)
- [Step4: Build a Evaluation Metric](#step4-build-a-evaluation-metric)
- [Step5: Train and Test with Native PyTorch](#step5-train-and-test-with-native-pytorch)
- [Step6: Train and Test with MMEngine (Recommended)](#step6-train-and-test-with-mmengine-recommended)
First, we need to initialize the `scope` for registry, to ensure that each module is registered under the scope of `mmaction`. For more detailed information about registry, please refer to [MMEngine Tutorial](https://mmengine.readthedocs.io/en/latest/advanced_tutorials/registry.html).
```python
from mmaction.utils import register_all_modules
register_all_modules(init_default_scope=True)
```
## Step0: Prepare Data
Please download our self-made [kinetics400_tiny](https://download.openmmlab.com/mmaction/kinetics400_tiny.zip) dataset and extract it to the `$MMACTION2/data` directory.
The directory structure after extraction should be as follows:
```
mmaction2
βββ data
β βββ kinetics400_tiny
β β βββ kinetics_tiny_train_video.txt
β β βββ kinetics_tiny_val_video.txt
β β βββ train
β β β βββ 27_CSXByd3s.mp4
β β β βββ 34XczvTaRiI.mp4
β β β βββ A-wiliK50Zw.mp4
β β β βββ ...
β β βββ val
β β βββ 0pVGiAU6XEA.mp4
β β βββ AQrbRSnRt8M.mp4
β β βββ ...
```
Here are some examples from the annotation file `kinetics_tiny_train_video.txt`:
```
D32_1gwq35E.mp4 0
iRuyZSKhHRg.mp4 1
oXy-e_P_cAI.mp4 0
34XczvTaRiI.mp4 1
h2YqqUhnR34.mp4 0
```
Each line in the file represents the annotation of a video, where the first item denotes the video filename (e.g., `D32_1gwq35E.mp4`), and the second item represents the corresponding label (e.g., label `0` for `D32_1gwq35E.mp4`). In this dataset, there are only `two` categories.
## Step1: Build a Pipeline
In order to `decode`, `sample`, `resize`, `crop`, `format`, and `pack` the input video and corresponding annotation, we need to design a pipeline to handle these processes. Specifically, we design seven `Transform` classes to build this video processing pipeline. Note that all `Transform` classes in OpenMMLab must inherit from the `BaseTransform` class in `mmcv`, implement the abstract method `transform`, and be registered to the `TRANSFORMS` registry. For more detailed information about data transform, please refer to [MMEngine Tutorial](https://mmengine.readthedocs.io/en/latest/advanced_tutorials/data_transform.html).
```python
import mmcv
import decord
import numpy as np
from mmcv.transforms import TRANSFORMS, BaseTransform, to_tensor
from mmaction.structures import ActionDataSample
@TRANSFORMS.register_module()
class VideoInit(BaseTransform):
def transform(self, results):
container = decord.VideoReader(results['filename'])
results['total_frames'] = len(container)
results['video_reader'] = container
return results
@TRANSFORMS.register_module()
class VideoSample(BaseTransform):
def __init__(self, clip_len, num_clips, test_mode=False):
self.clip_len = clip_len
self.num_clips = num_clips
self.test_mode = test_mode
def transform(self, results):
total_frames = results['total_frames']
interval = total_frames // self.clip_len
if self.test_mode:
# Make the sampling during testing deterministic
np.random.seed(42)
inds_of_all_clips = []
for i in range(self.num_clips):
bids = np.arange(self.clip_len) * interval
offset = np.random.randint(interval, size=bids.shape)
inds = bids + offset
inds_of_all_clips.append(inds)
results['frame_inds'] = np.concatenate(inds_of_all_clips)
results['clip_len'] = self.clip_len
results['num_clips'] = self.num_clips
return results
@TRANSFORMS.register_module()
class VideoDecode(BaseTransform):
def transform(self, results):
frame_inds = results['frame_inds']
container = results['video_reader']
imgs = container.get_batch(frame_inds).asnumpy()
imgs = list(imgs)
results['video_reader'] = None
del container
results['imgs'] = imgs
results['img_shape'] = imgs[0].shape[:2]
return results
@TRANSFORMS.register_module()
class VideoResize(BaseTransform):
def __init__(self, r_size):
self.r_size = (np.inf, r_size)
def transform(self, results):
img_h, img_w = results['img_shape']
new_w, new_h = mmcv.rescale_size((img_w, img_h), self.r_size)
imgs = [mmcv.imresize(img, (new_w, new_h))
for img in results['imgs']]
results['imgs'] = imgs
results['img_shape'] = imgs[0].shape[:2]
return results
@TRANSFORMS.register_module()
class VideoCrop(BaseTransform):
def __init__(self, c_size):
self.c_size = c_size
def transform(self, results):
img_h, img_w = results['img_shape']
center_x, center_y = img_w // 2, img_h // 2
x1, x2 = center_x - self.c_size // 2, center_x + self.c_size // 2
y1, y2 = center_y - self.c_size // 2, center_y + self.c_size // 2
imgs = [img[y1:y2, x1:x2] for img in results['imgs']]
results['imgs'] = imgs
results['img_shape'] = imgs[0].shape[:2]
return results
@TRANSFORMS.register_module()
class VideoFormat(BaseTransform):
def transform(self, results):
num_clips = results['num_clips']
clip_len = results['clip_len']
imgs = results['imgs']
# [num_clips*clip_len, H, W, C]
imgs = np.array(imgs)
# [num_clips, clip_len, H, W, C]
imgs = imgs.reshape((num_clips, clip_len) + imgs.shape[1:])
# [num_clips, C, clip_len, H, W]
imgs = imgs.transpose(0, 4, 1, 2, 3)
results['imgs'] = imgs
return results
@TRANSFORMS.register_module()
class VideoPack(BaseTransform):
def __init__(self, meta_keys=('img_shape', 'num_clips', 'clip_len')):
self.meta_keys = meta_keys
def transform(self, results):
packed_results = dict()
inputs = to_tensor(results['imgs'])
data_sample = ActionDataSample()
data_sample.set_gt_label(results['label'])
metainfo = {k: results[k] for k in self.meta_keys if k in results}
data_sample.set_metainfo(metainfo)
packed_results['inputs'] = inputs
packed_results['data_samples'] = data_sample
return packed_results
```
Below, we provide a code snippet (using `D32_1gwq35E.mp4 0` from the annotation file) to demonstrate how to use the pipeline.
```python
import os.path as osp
from mmengine.dataset import Compose
pipeline_cfg = [
dict(type='VideoInit'),
dict(type='VideoSample', clip_len=16, num_clips=1, test_mode=False),
dict(type='VideoDecode'),
dict(type='VideoResize', r_size=256),
dict(type='VideoCrop', c_size=224),
dict(type='VideoFormat'),
dict(type='VideoPack')
]
pipeline = Compose(pipeline_cfg)
data_prefix = 'data/kinetics400_tiny/train'
results = dict(filename=osp.join(data_prefix, 'D32_1gwq35E.mp4'), label=0)
packed_results = pipeline(results)
inputs = packed_results['inputs']
data_sample = packed_results['data_samples']
print('shape of the inputs: ', inputs.shape)
# Get metainfo of the inputs
print('image_shape: ', data_sample.img_shape)
print('num_clips: ', data_sample.num_clips)
print('clip_len: ', data_sample.clip_len)
# Get label of the inputs
print('label: ', data_sample.gt_label)
```
```
shape of the inputs: torch.Size([1, 3, 16, 224, 224])
image_shape: (224, 224)
num_clips: 1
clip_len: 16
label: tensor([0])
```
## Step2: Build a Dataset and DataLoader
All `Dataset` classes in OpenMMLab must inherit from the `BaseDataset` class in `mmengine`. We can customize annotation loading process by overriding the `load_data_list` method. Additionally, we can add more information to the `results` dict that is passed as input to the `pipeline` by overriding the `get_data_info` method. For more detailed information about `BaseDataset` class, please refer to [MMEngine Tutorial](https://mmengine.readthedocs.io/en/latest/advanced_tutorials/basedataset.html).
```python
import os.path as osp
from mmengine.fileio import list_from_file
from mmengine.dataset import BaseDataset
from mmaction.registry import DATASETS
@DATASETS.register_module()
class DatasetZelda(BaseDataset):
def __init__(self, ann_file, pipeline, data_root, data_prefix=dict(video=''),
test_mode=False, modality='RGB', **kwargs):
self.modality = modality
super(DatasetZelda, self).__init__(ann_file=ann_file, pipeline=pipeline, data_root=data_root,
data_prefix=data_prefix, test_mode=test_mode,
**kwargs)
def load_data_list(self):
data_list = []
fin = list_from_file(self.ann_file)
for line in fin:
line_split = line.strip().split()
filename, label = line_split
label = int(label)
filename = osp.join(self.data_prefix['video'], filename)
data_list.append(dict(filename=filename, label=label))
return data_list
def get_data_info(self, idx: int) -> dict:
data_info = super().get_data_info(idx)
data_info['modality'] = self.modality
return data_info
```
Next, we will demonstrate how to use dataset and dataloader to index data. We will use the `Runner.build_dataloader` method to construct the dataloader. For more detailed information about dataloader, please refer to [MMEngine Tutorial](https://mmengine.readthedocs.io/en/latest/tutorials/dataset.html#details-on-dataloader).
```python
from mmaction.registry import DATASETS
train_pipeline_cfg = [
dict(type='VideoInit'),
dict(type='VideoSample', clip_len=16, num_clips=1, test_mode=False),
dict(type='VideoDecode'),
dict(type='VideoResize', r_size=256),
dict(type='VideoCrop', c_size=224),
dict(type='VideoFormat'),
dict(type='VideoPack')
]
val_pipeline_cfg = [
dict(type='VideoInit'),
dict(type='VideoSample', clip_len=16, num_clips=5, test_mode=True),
dict(type='VideoDecode'),
dict(type='VideoResize', r_size=256),
dict(type='VideoCrop', c_size=224),
dict(type='VideoFormat'),
dict(type='VideoPack')
]
train_dataset_cfg = dict(
type='DatasetZelda',
ann_file='kinetics_tiny_train_video.txt',
pipeline=train_pipeline_cfg,
data_root='data/kinetics400_tiny/',
data_prefix=dict(video='train'))
val_dataset_cfg = dict(
type='DatasetZelda',
ann_file='kinetics_tiny_val_video.txt',
pipeline=val_pipeline_cfg,
data_root='data/kinetics400_tiny/',
data_prefix=dict(video='val'))
train_dataset = DATASETS.build(train_dataset_cfg)
packed_results = train_dataset[0]
inputs = packed_results['inputs']
data_sample = packed_results['data_samples']
print('shape of the inputs: ', inputs.shape)
# Get metainfo of the inputs
print('image_shape: ', data_sample.img_shape)
print('num_clips: ', data_sample.num_clips)
print('clip_len: ', data_sample.clip_len)
# Get label of the inputs
print('label: ', data_sample.gt_label)
from mmengine.runner import Runner
BATCH_SIZE = 2
train_dataloader_cfg = dict(
batch_size=BATCH_SIZE,
num_workers=0,
persistent_workers=False,
sampler=dict(type='DefaultSampler', shuffle=True),
dataset=train_dataset_cfg)
val_dataloader_cfg = dict(
batch_size=BATCH_SIZE,
num_workers=0,
persistent_workers=False,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=val_dataset_cfg)
train_data_loader = Runner.build_dataloader(dataloader=train_dataloader_cfg)
val_data_loader = Runner.build_dataloader(dataloader=val_dataloader_cfg)
batched_packed_results = next(iter(train_data_loader))
batched_inputs = batched_packed_results['inputs']
batched_data_sample = batched_packed_results['data_samples']
assert len(batched_inputs) == BATCH_SIZE
assert len(batched_data_sample) == BATCH_SIZE
```
The terminal output should be the same as the one shown in the [Step1: Build a Pipeline](#step1-build-a-pipeline).
## Step3: Build a Recognizer
Next, we will construct the `recognizer`, which mainly consists of three parts: `data preprocessor` for batching and normalizing the data, `backbone` for feature extraction, and `cls_head` for classification.
The implementation of `data_preprocessor` is as follows:
```python
import torch
from mmengine.model import BaseDataPreprocessor, stack_batch
from mmaction.registry import MODELS
@MODELS.register_module()
class DataPreprocessorZelda(BaseDataPreprocessor):
def __init__(self, mean, std):
super().__init__()
self.register_buffer(
'mean',
torch.tensor(mean, dtype=torch.float32).view(-1, 1, 1, 1),
False)
self.register_buffer(
'std',
torch.tensor(std, dtype=torch.float32).view(-1, 1, 1, 1),
False)
def forward(self, data, training=False):
data = self.cast_data(data)
inputs = data['inputs']
batch_inputs = stack_batch(inputs) # Batching
batch_inputs = (batch_inputs - self.mean) / self.std # Normalization
data['inputs'] = batch_inputs
return data
```
Here is the usage of data_preprocessor: feed the `batched_packed_results` obtained from the [Step2: Build a Dataset and DataLoader](#step2-build-a-dataset-and-dataloader) into the `data_preprocessor` for batching and normalization.
```python
from mmaction.registry import MODELS
data_preprocessor_cfg = dict(
type='DataPreprocessorZelda',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375])
data_preprocessor = MODELS.build(data_preprocessor_cfg)
preprocessed_inputs = data_preprocessor(batched_packed_results)
print(preprocessed_inputs['inputs'].shape)
```
```
torch.Size([2, 1, 3, 16, 224, 224])
```
The implementations of `backbone`, `cls_head` and `recognizer` are as follows:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmengine.model import BaseModel, BaseModule, Sequential
from mmengine.structures import LabelData
from mmaction.registry import MODELS
@MODELS.register_module()
class BackBoneZelda(BaseModule):
def __init__(self, init_cfg=None):
if init_cfg is None:
init_cfg = [dict(type='Kaiming', layer='Conv3d', mode='fan_out', nonlinearity="relu"),
dict(type='Constant', layer='BatchNorm3d', val=1, bias=0)]
super(BackBoneZelda, self).__init__(init_cfg=init_cfg)
self.conv1 = Sequential(nn.Conv3d(3, 64, kernel_size=(3, 7, 7),
stride=(1, 2, 2), padding=(1, 3, 3)),
nn.BatchNorm3d(64), nn.ReLU())
self.maxpool = nn.MaxPool3d(kernel_size=(1, 3, 3), stride=(1, 2, 2),
padding=(0, 1, 1))
self.conv = Sequential(nn.Conv3d(64, 128, kernel_size=3, stride=2, padding=1),
nn.BatchNorm3d(128), nn.ReLU())
def forward(self, imgs):
# imgs: [batch_size*num_views, 3, T, H, W]
# features: [batch_size*num_views, 128, T/2, H//8, W//8]
features = self.conv(self.maxpool(self.conv1(imgs)))
return features
@MODELS.register_module()
class ClsHeadZelda(BaseModule):
def __init__(self, num_classes, in_channels, dropout=0.5, average_clips='prob', init_cfg=None):
if init_cfg is None:
init_cfg = dict(type='Normal', layer='Linear', std=0.01)
super(ClsHeadZelda, self).__init__(init_cfg=init_cfg)
self.num_classes = num_classes
self.in_channels = in_channels
self.average_clips = average_clips
if dropout != 0:
self.dropout = nn.Dropout(dropout)
else:
self.dropout = None
self.fc = nn.Linear(self.in_channels, self.num_classes)
self.pool = nn.AdaptiveAvgPool3d(1)
self.loss_fn = nn.CrossEntropyLoss()
def forward(self, x):
N, C, T, H, W = x.shape
x = self.pool(x)
x = x.view(N, C)
assert x.shape[1] == self.in_channels
if self.dropout is not None:
x = self.dropout(x)
cls_scores = self.fc(x)
return cls_scores
def loss(self, feats, data_samples):
cls_scores = self(feats)
labels = torch.stack([x.gt_label for x in data_samples])
labels = labels.squeeze()
if labels.shape == torch.Size([]):
labels = labels.unsqueeze(0)
loss_cls = self.loss_fn(cls_scores, labels)
return dict(loss_cls=loss_cls)
def predict(self, feats, data_samples):
cls_scores = self(feats)
num_views = cls_scores.shape[0] // len(data_samples)
# assert num_views == data_samples[0].num_clips
cls_scores = self.average_clip(cls_scores, num_views)
for ds, sc in zip(data_samples, cls_scores):
pred = LabelData(item=sc)
ds.pred_scores = pred
return data_samples
def average_clip(self, cls_scores, num_views):
if self.average_clips not in ['score', 'prob', None]:
raise ValueError(f'{self.average_clips} is not supported. '
f'Currently supported ones are '
f'["score", "prob", None]')
total_views = cls_scores.shape[0]
cls_scores = cls_scores.view(total_views // num_views, num_views, -1)
if self.average_clips is None:
return cls_scores
elif self.average_clips == 'prob':
cls_scores = F.softmax(cls_scores, dim=2).mean(dim=1)
elif self.average_clips == 'score':
cls_scores = cls_scores.mean(dim=1)
return cls_scores
@MODELS.register_module()
class RecognizerZelda(BaseModel):
def __init__(self, backbone, cls_head, data_preprocessor):
super().__init__(data_preprocessor=data_preprocessor)
self.backbone = MODELS.build(backbone)
self.cls_head = MODELS.build(cls_head)
def extract_feat(self, inputs):
inputs = inputs.view((-1, ) + inputs.shape[2:])
return self.backbone(inputs)
def loss(self, inputs, data_samples):
feats = self.extract_feat(inputs)
loss = self.cls_head.loss(feats, data_samples)
return loss
def predict(self, inputs, data_samples):
feats = self.extract_feat(inputs)
predictions = self.cls_head.predict(feats, data_samples)
return predictions
def forward(self, inputs, data_samples=None, mode='tensor'):
if mode == 'tensor':
return self.extract_feat(inputs)
elif mode == 'loss':
return self.loss(inputs, data_samples)
elif mode == 'predict':
return self.predict(inputs, data_samples)
else:
raise RuntimeError(f'Invalid mode: {mode}')
```
The `init_cfg` is used for model weight initialization. For more information on model weight initialization, please refer to [MMEngine Tutorial](https://mmengine.readthedocs.io/en/latest/advanced_tutorials/initialize.html). The usage of the above modules is as follows:
```python
import torch
import copy
from mmaction.registry import MODELS
model_cfg = dict(
type='RecognizerZelda',
backbone=dict(type='BackBoneZelda'),
cls_head=dict(
type='ClsHeadZelda',
num_classes=2,
in_channels=128,
average_clips='prob'),
data_preprocessor = dict(
type='DataPreprocessorZelda',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375]))
model = MODELS.build(model_cfg)
# Train
model.train()
model.init_weights()
data_batch_train = copy.deepcopy(batched_packed_results)
data = model.data_preprocessor(data_batch_train, training=True)
loss = model(**data, mode='loss')
print('loss dict: ', loss)
# Test
with torch.no_grad():
model.eval()
data_batch_test = copy.deepcopy(batched_packed_results)
data = model.data_preprocessor(data_batch_test, training=False)
predictions = model(**data, mode='predict')
print('Label of Sample[0]', predictions[0].gt_label)
print('Scores of Sample[0]', predictions[0].pred_score)
```
```shell
04/03 23:28:01 - mmengine - INFO -
backbone.conv1.0.weight - torch.Size([64, 3, 3, 7, 7]):
KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0
04/03 23:28:01 - mmengine - INFO -
backbone.conv1.0.bias - torch.Size([64]):
KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0
04/03 23:28:01 - mmengine - INFO -
backbone.conv1.1.weight - torch.Size([64]):
The value is the same before and after calling `init_weights` of RecognizerZelda
04/03 23:28:01 - mmengine - INFO -
backbone.conv1.1.bias - torch.Size([64]):
The value is the same before and after calling `init_weights` of RecognizerZelda
04/03 23:28:01 - mmengine - INFO -
backbone.conv.0.weight - torch.Size([128, 64, 3, 3, 3]):
KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0
04/03 23:28:01 - mmengine - INFO -
backbone.conv.0.bias - torch.Size([128]):
KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0
04/03 23:28:01 - mmengine - INFO -
backbone.conv.1.weight - torch.Size([128]):
The value is the same before and after calling `init_weights` of RecognizerZelda
04/03 23:28:01 - mmengine - INFO -
backbone.conv.1.bias - torch.Size([128]):
The value is the same before and after calling `init_weights` of RecognizerZelda
04/03 23:28:01 - mmengine - INFO -
cls_head.fc.weight - torch.Size([2, 128]):
NormalInit: mean=0, std=0.01, bias=0
04/03 23:28:01 - mmengine - INFO -
cls_head.fc.bias - torch.Size([2]):
NormalInit: mean=0, std=0.01, bias=0
loss dict: {'loss_cls': tensor(0.6853, grad_fn=<NllLossBackward0>)}
Label of Sample[0] tensor([0])
Scores of Sample[0] tensor([0.5240, 0.4760])
```
## Step4: Build a Evaluation Metric
Note that all `Metric` classes in `OpenMMLab` must inherit from the `BaseMetric` class in `mmengine` and implement the abstract methods, `process` and `compute_metrics`. For more information on evaluation, please refer to [MMEngine Tutorial](https://mmengine.readthedocs.io/en/latest/tutorials/evaluation.html).
```python
import copy
from collections import OrderedDict
from mmengine.evaluator import BaseMetric
from mmaction.evaluation import top_k_accuracy
from mmaction.registry import METRICS
@METRICS.register_module()
class AccuracyMetric(BaseMetric):
def __init__(self, topk=(1, 5), collect_device='cpu', prefix='acc'):
super().__init__(collect_device=collect_device, prefix=prefix)
self.topk = topk
def process(self, data_batch, data_samples):
data_samples = copy.deepcopy(data_samples)
for data_sample in data_samples:
result = dict()
scores = data_sample['pred_score'].cpu().numpy()
label = data_sample['gt_label'].item()
result['scores'] = scores
result['label'] = label
self.results.append(result)
def compute_metrics(self, results: list) -> dict:
eval_results = OrderedDict()
labels = [res['label'] for res in results]
scores = [res['scores'] for res in results]
topk_acc = top_k_accuracy(scores, labels, self.topk)
for k, acc in zip(self.topk, topk_acc):
eval_results[f'topk{k}'] = acc
return eval_results
```
```python
from mmaction.registry import METRICS
metric_cfg = dict(type='AccuracyMetric', topk=(1, 5))
metric = METRICS.build(metric_cfg)
data_samples = [d.to_dict() for d in predictions]
metric.process(batched_packed_results, data_samples)
acc = metric.compute_metrics(metric.results)
print(acc)
```
```shell
OrderedDict([('topk1', 0.5), ('topk5', 1.0)])
```
## Step5: Train and Test with Native PyTorch
```python
import torch.optim as optim
from mmengine import track_iter_progress
device = 'cuda' # or 'cpu'
max_epochs = 10
optimizer = optim.Adam(model.parameters(), lr=0.01)
for epoch in range(max_epochs):
model.train()
losses = []
for data_batch in track_iter_progress(train_data_loader):
data = model.data_preprocessor(data_batch, training=True)
loss_dict = model(**data, mode='loss')
loss = loss_dict['loss_cls']
optimizer.zero_grad()
loss.backward()
optimizer.step()
losses.append(loss.item())
print(f'Epoch[{epoch}]: loss ', sum(losses) / len(train_data_loader))
with torch.no_grad():
model.eval()
for data_batch in track_iter_progress(val_data_loader):
data = model.data_preprocessor(data_batch, training=False)
predictions = model(**data, mode='predict')
data_samples = [d.to_dict() for d in predictions]
metric.process(data_batch, data_samples)
acc = metric.acc = metric.compute_metrics(metric.results)
for name, topk in acc.items():
print(f'{name}: ', topk)
```
## Step6: Train and Test with MMEngine (Recommended)
For more details on training and testing, you can refer to [MMAction2 Tutorial](https://mmaction2.readthedocs.io/en/latest/user_guides/train_test.html). For more information on `Runner`, please refer to [MMEngine Tutorial](https://mmengine.readthedocs.io/en/latest/tutorials/runner.html).
```python
from mmengine.runner import Runner
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=10, val_interval=1)
val_cfg = dict(type='ValLoop')
optim_wrapper = dict(optimizer=dict(type='Adam', lr=0.01))
runner = Runner(model=model_cfg, work_dir='./work_dirs/guide',
train_dataloader=train_dataloader_cfg,
train_cfg=train_cfg,
val_dataloader=val_dataloader_cfg,
val_cfg=val_cfg,
optim_wrapper=optim_wrapper,
val_evaluator=[metric_cfg],
default_scope='mmaction')
runner.train()
```
|