File size: 25,894 Bytes
d3dbf03 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 |
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import copy as cp
import tempfile
import warnings
import cv2
import mmcv
import mmengine
import numpy as np
import torch
from mmengine import DictAction
from mmengine.structures import InstanceData
from mmaction.apis import (detection_inference, inference_recognizer,
inference_skeleton, init_recognizer, pose_inference)
from mmaction.registry import VISUALIZERS
from mmaction.structures import ActionDataSample
from mmaction.utils import frame_extract
try:
from mmdet.apis import init_detector
except (ImportError, ModuleNotFoundError):
warnings.warn('Failed to import `init_detector` form `mmdet.apis`. '
'These apis are required in skeleton-based applications! ')
try:
import moviepy.editor as mpy
except ImportError:
raise ImportError('Please install moviepy to enable output file')
FONTFACE = cv2.FONT_HERSHEY_DUPLEX
FONTSCALE = 0.5
FONTCOLOR = (255, 255, 255) # BGR, white
MSGCOLOR = (128, 128, 128) # BGR, gray
THICKNESS = 1
LINETYPE = 1
def hex2color(h):
"""Convert the 6-digit hex string to tuple of 3 int value (RGB)"""
return (int(h[:2], 16), int(h[2:4], 16), int(h[4:], 16))
PLATEBLUE = '03045e-023e8a-0077b6-0096c7-00b4d8-48cae4'
PLATEBLUE = PLATEBLUE.split('-')
PLATEBLUE = [hex2color(h) for h in PLATEBLUE]
PLATEGREEN = '004b23-006400-007200-008000-38b000-70e000'
PLATEGREEN = PLATEGREEN.split('-')
PLATEGREEN = [hex2color(h) for h in PLATEGREEN]
def visualize(args,
frames,
annotations,
pose_data_samples,
action_result,
plate=PLATEBLUE,
max_num=5):
"""Visualize frames with predicted annotations.
Args:
frames (list[np.ndarray]): Frames for visualization, note that
len(frames) % len(annotations) should be 0.
annotations (list[list[tuple]]): The predicted spatio-temporal
detection results.
pose_data_samples (list[list[PoseDataSample]): The pose results.
action_result (str): The predicted action recognition results.
pose_model (nn.Module): The constructed pose model.
plate (str): The plate used for visualization. Default: PLATEBLUE.
max_num (int): Max number of labels to visualize for a person box.
Default: 5.
Returns:
list[np.ndarray]: Visualized frames.
"""
assert max_num + 1 <= len(plate)
frames_ = cp.deepcopy(frames)
frames_ = [mmcv.imconvert(f, 'bgr', 'rgb') for f in frames_]
nf, na = len(frames), len(annotations)
assert nf % na == 0
nfpa = len(frames) // len(annotations)
anno = None
h, w, _ = frames[0].shape
scale_ratio = np.array([w, h, w, h])
# add pose results
if pose_data_samples:
pose_config = mmengine.Config.fromfile(args.pose_config)
visualizer = VISUALIZERS.build(pose_config.visualizer)
visualizer.set_dataset_meta(pose_data_samples[0].dataset_meta)
for i, (d, f) in enumerate(zip(pose_data_samples, frames_)):
visualizer.add_datasample(
'result',
f,
data_sample=d,
draw_gt=False,
draw_heatmap=False,
draw_bbox=True,
show=False,
wait_time=0,
out_file=None,
kpt_thr=0.3)
frames_[i] = visualizer.get_image()
cv2.putText(frames_[i], action_result, (10, 30), FONTFACE,
FONTSCALE, FONTCOLOR, THICKNESS, LINETYPE)
for i in range(na):
anno = annotations[i]
if anno is None:
continue
for j in range(nfpa):
ind = i * nfpa + j
frame = frames_[ind]
# add action result for whole video
cv2.putText(frame, action_result, (10, 30), FONTFACE, FONTSCALE,
FONTCOLOR, THICKNESS, LINETYPE)
# add spatio-temporal action detection results
for ann in anno:
box = ann[0]
label = ann[1]
if not len(label):
continue
score = ann[2]
box = (box * scale_ratio).astype(np.int64)
st, ed = tuple(box[:2]), tuple(box[2:])
if not pose_data_samples:
cv2.rectangle(frame, st, ed, plate[0], 2)
for k, lb in enumerate(label):
if k >= max_num:
break
text = abbrev(lb)
text = ': '.join([text, f'{score[k]:.3f}'])
location = (0 + st[0], 18 + k * 18 + st[1])
textsize = cv2.getTextSize(text, FONTFACE, FONTSCALE,
THICKNESS)[0]
textwidth = textsize[0]
diag0 = (location[0] + textwidth, location[1] - 14)
diag1 = (location[0], location[1] + 2)
cv2.rectangle(frame, diag0, diag1, plate[k + 1], -1)
cv2.putText(frame, text, location, FONTFACE, FONTSCALE,
FONTCOLOR, THICKNESS, LINETYPE)
return frames_
def parse_args():
parser = argparse.ArgumentParser(description='MMAction2 demo')
parser.add_argument(
'--rgb-stdet-config',
default=(
'configs/detection/slowonly/'
'slowonly_kinetics400-pretrained-r101_8xb16-8x8x1-20e_ava21-rgb.py'
),
help='rgb-based spatio temporal detection config file path')
parser.add_argument(
'--rgb-stdet-checkpoint',
default=('https://download.openmmlab.com/mmaction/detection/ava/'
'slowonly_omnisource_pretrained_r101_8x8x1_20e_ava_rgb/'
'slowonly_omnisource_pretrained_r101_8x8x1_20e_ava_rgb'
'_20201217-16378594.pth'),
help='rgb-based spatio temporal detection checkpoint file/url')
parser.add_argument(
'--skeleton-stdet-checkpoint',
default=('https://download.openmmlab.com/mmaction/skeleton/posec3d/'
'posec3d_ava.pth'),
help='skeleton-based spatio temporal detection checkpoint file/url')
parser.add_argument(
'--det-config',
default='demo/demo_configs/faster-rcnn_r50_fpn_2x_coco_infer.py',
help='human detection config file path (from mmdet)')
parser.add_argument(
'--det-checkpoint',
default=('http://download.openmmlab.com/mmdetection/v2.0/'
'faster_rcnn/faster_rcnn_r50_fpn_2x_coco/'
'faster_rcnn_r50_fpn_2x_coco_'
'bbox_mAP-0.384_20200504_210434-a5d8aa15.pth'),
help='human detection checkpoint file/url')
parser.add_argument(
'--pose-config',
default='demo/demo_configs'
'/td-hm_hrnet-w32_8xb64-210e_coco-256x192_infer.py',
help='human pose estimation config file path (from mmpose)')
parser.add_argument(
'--pose-checkpoint',
default=('https://download.openmmlab.com/mmpose/top_down/hrnet/'
'hrnet_w32_coco_256x192-c78dce93_20200708.pth'),
help='human pose estimation checkpoint file/url')
parser.add_argument(
'--skeleton-config',
default='configs/skeleton/posec3d'
'/slowonly_r50_8xb16-u48-240e_ntu60-xsub-keypoint.py',
help='skeleton-based action recognition config file path')
parser.add_argument(
'--skeleton-checkpoint',
default='https://download.openmmlab.com/mmaction/skeleton/posec3d/'
'posec3d_k400.pth',
help='skeleton-based action recognition checkpoint file/url')
parser.add_argument(
'--rgb-config',
default='configs/recognition/tsn/'
'tsn_imagenet-pretrained-r50_8xb32-1x1x3-100e_kinetics400-rgb.py',
help='rgb-based action recognition config file path')
parser.add_argument(
'--rgb-checkpoint',
default='https://download.openmmlab.com/mmaction/recognition/'
'tsn/tsn_r50_1x1x3_100e_kinetics400_rgb/'
'tsn_r50_1x1x3_100e_kinetics400_rgb_20200614-e508be42.pth',
help='rgb-based action recognition checkpoint file/url')
parser.add_argument(
'--use-skeleton-stdet',
action='store_true',
help='use skeleton-based spatio temporal detection method')
parser.add_argument(
'--use-skeleton-recog',
action='store_true',
help='use skeleton-based action recognition method')
parser.add_argument(
'--det-score-thr',
type=float,
default=0.9,
help='the threshold of human detection score')
parser.add_argument(
'--action-score-thr',
type=float,
default=0.4,
help='the threshold of action prediction score')
parser.add_argument(
'--video',
default='demo/test_video_structuralize.mp4',
help='video file/url')
parser.add_argument(
'--label-map-stdet',
default='tools/data/ava/label_map.txt',
help='label map file for spatio-temporal action detection')
parser.add_argument(
'--label-map',
default='tools/data/kinetics/label_map_k400.txt',
help='label map file for action recognition')
parser.add_argument(
'--device', type=str, default='cuda:0', help='CPU/CUDA device option')
parser.add_argument(
'--out-filename',
default='demo/test_stdet_recognition_output.mp4',
help='output filename')
parser.add_argument(
'--predict-stepsize',
default=8,
type=int,
help='give out a spatio-temporal detection prediction per n frames')
parser.add_argument(
'--output-stepsize',
default=1,
type=int,
help=('show one frame per n frames in the demo, we should have: '
'predict_stepsize % output_stepsize == 0'))
parser.add_argument(
'--output-fps',
default=24,
type=int,
help='the fps of demo video output')
parser.add_argument(
'--cfg-options',
nargs='+',
action=DictAction,
default={},
help='override some settings in the used config, the key-value pair '
'in xxx=yyy format will be merged into config file. For example, '
"'--cfg-options model.backbone.depth=18 model.backbone.with_cp=True'")
args = parser.parse_args()
return args
def load_label_map(file_path):
"""Load Label Map.
Args:
file_path (str): The file path of label map.
Returns:
dict: The label map (int -> label name).
"""
lines = open(file_path).readlines()
lines = [x.strip().split(': ') for x in lines]
return {int(x[0]): x[1] for x in lines}
def abbrev(name):
"""Get the abbreviation of label name:
'take (an object) from (a person)' -> 'take ... from ...'
"""
while name.find('(') != -1:
st, ed = name.find('('), name.find(')')
name = name[:st] + '...' + name[ed + 1:]
return name
def pack_result(human_detection, result, img_h, img_w):
"""Short summary.
Args:
human_detection (np.ndarray): Human detection result.
result (type): The predicted label of each human proposal.
img_h (int): The image height.
img_w (int): The image width.
Returns:
tuple: Tuple of human proposal, label name and label score.
"""
human_detection[:, 0::2] /= img_w
human_detection[:, 1::2] /= img_h
results = []
if result is None:
return None
for prop, res in zip(human_detection, result):
res.sort(key=lambda x: -x[1])
results.append(
(prop.data.cpu().numpy(), [x[0] for x in res], [x[1]
for x in res]))
return results
def expand_bbox(bbox, h, w, ratio=1.25):
x1, y1, x2, y2 = bbox
center_x = (x1 + x2) // 2
center_y = (y1 + y2) // 2
width = x2 - x1
height = y2 - y1
square_l = max(width, height)
new_width = new_height = square_l * ratio
new_x1 = max(0, int(center_x - new_width / 2))
new_x2 = min(int(center_x + new_width / 2), w)
new_y1 = max(0, int(center_y - new_height / 2))
new_y2 = min(int(center_y + new_height / 2), h)
return (new_x1, new_y1, new_x2, new_y2)
def cal_iou(box1, box2):
xmin1, ymin1, xmax1, ymax1 = box1
xmin2, ymin2, xmax2, ymax2 = box2
s1 = (xmax1 - xmin1) * (ymax1 - ymin1)
s2 = (xmax2 - xmin2) * (ymax2 - ymin2)
xmin = max(xmin1, xmin2)
ymin = max(ymin1, ymin2)
xmax = min(xmax1, xmax2)
ymax = min(ymax1, ymax2)
w = max(0, xmax - xmin)
h = max(0, ymax - ymin)
intersect = w * h
union = s1 + s2 - intersect
iou = intersect / union
return iou
def skeleton_based_action_recognition(args, pose_results, h, w):
label_map = [x.strip() for x in open(args.label_map).readlines()]
num_class = len(label_map)
skeleton_config = mmengine.Config.fromfile(args.skeleton_config)
skeleton_config.model.cls_head.num_classes = num_class # for K400 dataset
skeleton_model = init_recognizer(
skeleton_config, args.skeleton_checkpoint, device=args.device)
result = inference_skeleton(skeleton_model, pose_results, (h, w))
action_idx = result.pred_score.argmax().item()
return label_map[action_idx]
def rgb_based_action_recognition(args):
rgb_config = mmengine.Config.fromfile(args.rgb_config)
rgb_config.model.backbone.pretrained = None
rgb_model = init_recognizer(rgb_config, args.rgb_checkpoint, args.device)
action_results = inference_recognizer(rgb_model, args.video)
rgb_action_result = action_results.pred_score.argmax().item()
label_map = [x.strip() for x in open(args.label_map).readlines()]
return label_map[rgb_action_result]
def skeleton_based_stdet(args, label_map, human_detections, pose_results,
num_frame, clip_len, frame_interval, h, w):
window_size = clip_len * frame_interval
assert clip_len % 2 == 0, 'We would like to have an even clip_len'
timestamps = np.arange(window_size // 2, num_frame + 1 - window_size // 2,
args.predict_stepsize)
skeleton_config = mmengine.Config.fromfile(args.skeleton_config)
num_class = max(label_map.keys()) + 1 # for AVA dataset (81)
skeleton_config.model.cls_head.num_classes = num_class
skeleton_stdet_model = init_recognizer(skeleton_config,
args.skeleton_stdet_checkpoint,
args.device)
skeleton_predictions = []
print('Performing SpatioTemporal Action Detection for each clip')
prog_bar = mmengine.ProgressBar(len(timestamps))
for timestamp in timestamps:
proposal = human_detections[timestamp - 1]
if proposal.shape[0] == 0: # no people detected
skeleton_predictions.append(None)
continue
start_frame = timestamp - (clip_len // 2 - 1) * frame_interval
frame_inds = start_frame + np.arange(0, window_size, frame_interval)
frame_inds = list(frame_inds - 1)
num_frame = len(frame_inds) # 30
pose_result = [pose_results[ind] for ind in frame_inds]
skeleton_prediction = []
for i in range(proposal.shape[0]): # num_person
skeleton_prediction.append([])
fake_anno = dict(
frame_dict='',
label=-1,
img_shape=(h, w),
origin_shape=(h, w),
start_index=0,
modality='Pose',
total_frames=num_frame)
num_person = 1
num_keypoint = 17
keypoint = np.zeros(
(num_person, num_frame, num_keypoint, 2)) # M T V 2
keypoint_score = np.zeros(
(num_person, num_frame, num_keypoint)) # M T V
# pose matching
person_bbox = proposal[i][:4]
area = expand_bbox(person_bbox, h, w)
for j, poses in enumerate(pose_result): # num_frame
max_iou = float('-inf')
index = -1
if len(poses['keypoints']) == 0:
continue
for k, bbox in enumerate(poses['bboxes']):
iou = cal_iou(bbox, area)
if max_iou < iou:
index = k
max_iou = iou
keypoint[0, j] = poses['keypoints'][index]
keypoint_score[0, j] = poses['keypoint_scores'][index]
fake_anno['keypoint'] = keypoint
fake_anno['keypoint_score'] = keypoint_score
output = inference_recognizer(skeleton_stdet_model, fake_anno)
# for multi-label recognition
score = output.pred_score.tolist()
for k in range(len(score)): # 81
if k not in label_map:
continue
if score[k] > args.action_score_thr:
skeleton_prediction[i].append((label_map[k], score[k]))
skeleton_predictions.append(skeleton_prediction)
prog_bar.update()
return timestamps, skeleton_predictions
def rgb_based_stdet(args, frames, label_map, human_detections, w, h, new_w,
new_h, w_ratio, h_ratio):
rgb_stdet_config = mmengine.Config.fromfile(args.rgb_stdet_config)
rgb_stdet_config.merge_from_dict(args.cfg_options)
val_pipeline = rgb_stdet_config.val_pipeline
sampler = [x for x in val_pipeline if x['type'] == 'SampleAVAFrames'][0]
clip_len, frame_interval = sampler['clip_len'], sampler['frame_interval']
assert clip_len % 2 == 0, 'We would like to have an even clip_len'
window_size = clip_len * frame_interval
num_frame = len(frames)
# Note that it's 1 based here
timestamps = np.arange(window_size // 2, num_frame + 1 - window_size // 2,
args.predict_stepsize)
# Get img_norm_cfg
img_norm_cfg = dict(
mean=np.array(rgb_stdet_config.model.data_preprocessor.mean),
std=np.array(rgb_stdet_config.model.data_preprocessor.std),
to_rgb=False)
# Build STDET model
try:
# In our spatiotemporal detection demo, different actions should have
# the same number of bboxes.
rgb_stdet_config['model']['test_cfg']['rcnn'] = dict(action_thr=0)
except KeyError:
pass
rgb_stdet_config.model.backbone.pretrained = None
rgb_stdet_model = init_detector(
rgb_stdet_config, args.rgb_stdet_checkpoint, device=args.device)
predictions = []
print('Performing SpatioTemporal Action Detection for each clip')
prog_bar = mmengine.ProgressBar(len(timestamps))
# for timestamp, proposal in zip(timestamps, human_detections):
for timestamp in timestamps:
proposal = human_detections[timestamp - 1]
if proposal.shape[0] == 0:
predictions.append(None)
continue
start_frame = timestamp - (clip_len // 2 - 1) * frame_interval
frame_inds = start_frame + np.arange(0, window_size, frame_interval)
frame_inds = list(frame_inds - 1)
imgs = [frames[ind].astype(np.float32) for ind in frame_inds]
_ = [mmcv.imnormalize_(img, **img_norm_cfg) for img in imgs]
# THWC -> CTHW -> 1CTHW
input_array = np.stack(imgs).transpose((3, 0, 1, 2))[np.newaxis]
input_tensor = torch.from_numpy(input_array).to(args.device)
datasample = ActionDataSample()
datasample.proposals = InstanceData(bboxes=proposal)
datasample.set_metainfo(dict(img_shape=(new_h, new_w)))
with torch.no_grad():
result = rgb_stdet_model(
input_tensor, [datasample], mode='predict')
scores = result[0].pred_instances.scores
prediction = []
# N proposals
for i in range(proposal.shape[0]):
prediction.append([])
# Perform action score thr
for i in range(scores.shape[1]):
if i not in label_map:
continue
for j in range(proposal.shape[0]):
if scores[j, i] > args.action_score_thr:
prediction[j].append((label_map[i], scores[j,
i].item()))
predictions.append(prediction)
prog_bar.update()
return timestamps, predictions
def main():
args = parse_args()
tmp_dir = tempfile.TemporaryDirectory()
frame_paths, original_frames = frame_extract(
args.video, out_dir=tmp_dir.name)
num_frame = len(frame_paths)
h, w, _ = original_frames[0].shape
# Get Human detection results and pose results
human_detections, _ = detection_inference(
args.det_config,
args.det_checkpoint,
frame_paths,
args.det_score_thr,
device=args.device)
pose_datasample = None
if args.use_skeleton_recog or args.use_skeleton_stdet:
pose_results, pose_datasample = pose_inference(
args.pose_config,
args.pose_checkpoint,
frame_paths,
human_detections,
device=args.device)
# resize frames to shortside 256
new_w, new_h = mmcv.rescale_size((w, h), (256, np.Inf))
frames = [mmcv.imresize(img, (new_w, new_h)) for img in original_frames]
w_ratio, h_ratio = new_w / w, new_h / h
# Load spatio-temporal detection label_map
stdet_label_map = load_label_map(args.label_map_stdet)
rgb_stdet_config = mmengine.Config.fromfile(args.rgb_stdet_config)
rgb_stdet_config.merge_from_dict(args.cfg_options)
try:
if rgb_stdet_config['data']['train']['custom_classes'] is not None:
stdet_label_map = {
id + 1: stdet_label_map[cls]
for id, cls in enumerate(rgb_stdet_config['data']['train']
['custom_classes'])
}
except KeyError:
pass
action_result = None
if args.use_skeleton_recog:
print('Use skeleton-based recognition')
action_result = skeleton_based_action_recognition(
args, pose_results, h, w)
else:
print('Use rgb-based recognition')
action_result = rgb_based_action_recognition(args)
stdet_preds = None
if args.use_skeleton_stdet:
print('Use skeleton-based SpatioTemporal Action Detection')
clip_len, frame_interval = 30, 1
timestamps, stdet_preds = skeleton_based_stdet(args, stdet_label_map,
human_detections,
pose_results, num_frame,
clip_len,
frame_interval, h, w)
for i in range(len(human_detections)):
det = human_detections[i]
det[:, 0:4:2] *= w_ratio
det[:, 1:4:2] *= h_ratio
human_detections[i] = torch.from_numpy(det[:, :4]).to(args.device)
else:
print('Use rgb-based SpatioTemporal Action Detection')
for i in range(len(human_detections)):
det = human_detections[i]
det[:, 0:4:2] *= w_ratio
det[:, 1:4:2] *= h_ratio
human_detections[i] = torch.from_numpy(det[:, :4]).to(args.device)
timestamps, stdet_preds = rgb_based_stdet(args, frames,
stdet_label_map,
human_detections, w, h,
new_w, new_h, w_ratio,
h_ratio)
stdet_results = []
for timestamp, prediction in zip(timestamps, stdet_preds):
human_detection = human_detections[timestamp - 1]
stdet_results.append(
pack_result(human_detection, prediction, new_h, new_w))
def dense_timestamps(timestamps, n):
"""Make it nx frames."""
old_frame_interval = (timestamps[1] - timestamps[0])
start = timestamps[0] - old_frame_interval / n * (n - 1) / 2
new_frame_inds = np.arange(
len(timestamps) * n) * old_frame_interval / n + start
return new_frame_inds.astype(np.int64)
dense_n = int(args.predict_stepsize / args.output_stepsize)
output_timestamps = dense_timestamps(timestamps, dense_n)
frames = [
cv2.imread(frame_paths[timestamp - 1])
for timestamp in output_timestamps
]
if args.use_skeleton_recog or args.use_skeleton_stdet:
pose_datasample = [
pose_datasample[timestamp - 1] for timestamp in output_timestamps
]
vis_frames = visualize(args, frames, stdet_results, pose_datasample,
action_result)
vid = mpy.ImageSequenceClip(vis_frames, fps=args.output_fps)
vid.write_videofile(args.out_filename)
tmp_dir.cleanup()
if __name__ == '__main__':
main()
|