File size: 20,604 Bytes
0655b48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
import os
import numpy as np

import torch
from torch import nn
import torch.nn.functional as F
from transformers import AutoTokenizer, AutoModel, BertTokenizer, BertForMaskedLM
import torch.distributed as dist
import esm
from torch.nn.utils.weight_norm import weight_norm


"""
functions and classes adapted from the following:
    1. https://keras.io/examples/vision/nl_image_search/
    2. https://colab.research.google.com/drive/1hYHb0FTdKQCXZs3qCwVZnSuVGrZU2Z1w?usp=sharing
"""

class ProteinEncoder(nn.Module):
    """
    Encoder for protein sequence to a fixed size vector --> z_s
    """
    
    def __init__(self, args: any):
        super().__init__()

        #self.script_args = args
        self.seq_model_path = args.seq_model_path
        self.pretrained = args.pretrained_seq
        self.trainable = args.trainable_seq
        self.n_layers_to_finetune = args.pLM_n_layers_to_finetune
        self.rep_layer = args.rep_layer
        self.model, self.alphabet = self.get_ESM_model() # get model and alphabet (ESM)
        
        for p in self.model.parameters():
            if self.trainable and self.n_layers_to_finetune == 0:
                p.required_grad = True
            else:
                p.requires_grad = False
        
        # Make the last n_layers_to_finetune layers trainable
        if self.trainable and self.n_layers_to_finetune != 0:
            for layer in self.model.layers[-self.n_layers_to_finetune:]:
                for p in layer.parameters():
                    p.requires_grad = True

        # Use the [CLS] token hidden representation as the sentence's embedding
        # for the downstream latent alignment.
        self.target_token_idx = 0

    def get_ESM_model(self):

        return esm.pretrained.load_model_and_alphabet(
                os.path.expanduser(
                    self.seq_model_path
                )
        )
    
    def forward(self, x_s: torch.Tensor, compute_logits: bool=False):
        # drop channel depth
        x_s = x_s.squeeze(1)

        outputs = self.model(
                x_s,
                repr_layers=[self.rep_layer],
                return_contacts=False
        )
        
        # mask langauge model objective 
        if compute_logits:
            logits = outputs['logits']
            return logits
       
        # fine-tuning cls token for protein sequence alignment with biomedical text 
        cls_hidden = outputs['representations'][self.rep_layer][:,self.target_token_idx,:]
        return cls_hidden
    
class TextEncoder(nn.Module):

    """
    Encoder for protein's natural text to a fixed size vector --> z_t
    """

    def __init__(self, args: any):
        super().__init__()
 
        self.model_name = args.text_model_path
        self.pretrained = args.pretrained_text
        self.trainable = args.trainable_text
        self.n_layers_to_finetune = args.bLM_n_layers_to_finetune 
        self.tokenizer = AutoTokenizer.from_pretrained(args.text_model_path)

        if self.pretrained:
            #self.model = AutoModel.from_pretrained(self.model_name)
            self.model = BertForMaskedLM.from_pretrained(self.model_name)

        else:
            #self.model = AutoModel.from_config(self.model_name)
            self.model = BertForMaskedLM.from_config(self.model_name)

        for p in self.model.parameters():
            if self.trainable and self.n_layers_to_finetune == 0:
                p.required_grad = True
            else:
                p.requires_grad = False
       
        # Make the last n_layers_to_finetune layers trainable
        if self.trainable and self.n_layers_to_finetune != 0:
            for layer in self.model.bert.encoder.layer[-self.n_layers_to_finetune:]:
                for p in layer.parameters():
                    p.requires_grad = True
        
        # Use the [CLS] token hidden representation as the sentence's embedding
        # for the downstream latent alignment.
        self.target_token_idx = 0

    def forward(self, inputs: torch.Tensor, compute_logits: bool=False) -> torch.Tensor:
        # drop channel depth
        inputs = inputs.squeeze(1)
        
        if compute_logits:
            # compute the masked language model logits
            #sequence_output = outputs.last_hidden_state
            outputs = self.model(inputs)
            logits = outputs.logits
            return logits
        
        else:
            outputs = self.model(inputs, output_hidden_states=True)
            # use the token representations...
            last_hidden_state = outputs.hidden_states[-1]
            return last_hidden_state[:, self.target_token_idx, :] # return [cls] token 



class ProjectionHead(nn.Module):
    """
    g(.) which maps z_t --> h_t or z_s --> h_s
    
    Note: h is the joint embedding representation, h_t
    is the joint embedding for the text caption, and
    h_s is the joint embedding for the protein sequence.
    """

    def __init__(self, embedding_dim: int, args: any):

        super().__init__()
        self.projection_dim = args.proj_embedding_dim
        self.dropout = args.dropout
        self.embedding_dim = embedding_dim

        # model graph
        self.projection = nn.Linear(self.embedding_dim, self.projection_dim)
        self.gelu = nn.GELU()
        self.fc = nn.Linear(self.projection_dim, self.projection_dim)
        self.dropout = nn.Dropout(self.dropout)
        self.layer_norm = nn.LayerNorm(self.projection_dim)

    def forward(self, z: torch.Tensor) -> torch.Tensor:

        projection = self.projection(z)
        h = self.gelu(projection)
        h = self.fc(h)
        h = self.dropout(h)
        h = h + projection
        h = self.layer_norm(h)
        return h




#####################
# Pfam architecture #
#####################



class pfam_PEN_CL(nn.Module):

    """
    Protein Embeddings with Natural lanauge using Constrastive Learing (PEN-CL) while including pfam constrastive learning.
    """

    def __init__(self, args: any):

        super().__init__()

        self.protein_embedding = args.protein_encoder_embedding
        self.text_embedding = args.text_encoder_embedding
        self.temperature = args.temperature

        # protein sequence expert
        self.protein_encoder = ProteinEncoder(args=args)
        # natural text expert
        self.text_encoder = TextEncoder(args=args)
        
        # projection heads g_seq( . ) --> joint embedding space
        self.protein_projection = ProjectionHead(
                embedding_dim=self.protein_embedding,
                args=args
        )

        # projection heads g_text( . ) --> joint embedding space
        self.text_projection = ProjectionHead(
                embedding_dim=self.text_embedding,
                args=args
        )

    def forward(
            self,
            x_t: torch.Tensor,
            x_s: torch.Tensor,
            compute_masked_logits: bool=False
        ) -> dict:

        if compute_masked_logits:
            # forward pass for computing logits for masked langauge objective
            protein_logits = self.protein_encoder(x_s, compute_logits=True)
            text_logits = self.text_encoder(x_t, compute_logits=True)

            return {
                    'text_masked_logits': text_logits,
                    'protein_masked_logits': protein_logits
            }

        else:
            # split the tuple into 2 dicts... 
            # getting protein sequence and text inputs ...
            z_t = self.text_encoder(x_t, compute_logits=False)
            z_s = self.protein_encoder(x_s, compute_logits=False)

            # "joint" sequence and text embedding (with same dimension)
            z_t_joint = self.text_projection(z_t)
            z_s_joint = self.protein_projection(z_s)

            return {
                    'text_joint_latent': z_t_joint,
                    'seq_joint_latent': z_s_joint,
            }

    def compute_inter_loss(
        self,
        protein_embeddings: torch.Tensor,
        text_embeddings: torch.Tensor,
        batch_size: int
    ) -> (
            torch.Tensor,
            torch.Tensor
            ):
            
            """
            Compute the inter-modal contrastive InfoNCE loss between protein and text embeddings.

            Parameters:
            - protein_embeddings: A tensor representing the embeddings of the protein sequences.
            - text_embeddings: A tensor representing the embeddings of the text descriptions.
            - batch_size: The number of samples in the batch.

            Steps:
            1. Generate a masking matrix to identify off-diagonal elements.
            2. Compute cosine similarities (i.e., logits) between text and protein embeddings.
            3. Compute self-similarities for both protein and text embeddings.
            4. Mask off-diagonal elements between swiss-prot and pfam in the similarity matrices.
            5. Define ground truth by averaging the masked protein and text similarity matrices.
            6. Compute the contrastive loss for the protein and text embeddings using the ground truth.

            Returns:
            - Mean contrastive loss for the given batch of protein and text embeddings.
            - The logits (cosine similarity matrix between text and protein embeddings).

            Note: This function assumes a specific structure in the input batches, where corresponding positive samples 
            in the protein and text embeddings are arranged in a particular way, allowing for masking and contrastive loss calculation.
            """
            
            # get off-diagonal masking matrix
            mask = torch.zeros((2*batch_size, 2*batch_size))
            # mask the bottom left quadrant diagonal
            mask[batch_size:, :batch_size] = torch.eye(batch_size)
            # mask the top right quadrant
            mask[:batch_size, batch_size:] = torch.eye(batch_size)
            # convert to correct device and convert to boolean
            mask = mask.to(protein_embeddings.device).bool()

            # matrix multiplication between model embeddings
            logits = (text_embeddings @ protein_embeddings.T) / self.temperature
            protein_similarity = protein_embeddings @ protein_embeddings.T
            text_similarity = text_embeddings @ text_embeddings.T

            # mask the off-diagonal between swiss-prot and pfam
            mask_protein_similarity = self.set_inf(protein_similarity, mask)
            mask_text_similarity = self.set_inf(text_similarity, mask)
            mask_logits = self.set_inf(logits, mask)

            # ground truth
            targets = F.softmax(
                (mask_protein_similarity + mask_text_similarity) / (2 * self.temperature), dim=-1
            )

            # compute loss
            text_loss = self.cross_entropy(mask_logits, targets, reduction='none')
            protein_loss = self.cross_entropy(mask_logits.T, targets.T, reduction='none')
            loss = (protein_loss + text_loss) / 2.0

            return (
                loss.mean(),
                mask_logits.detach().cpu()
            )


    def compute_intra_loss(  
            self,
            protein_embeddings,
            batch_size
        ) -> (
                torch.Tensor,
                torch.Tensor,
        ):
        """
        Compute the intra-modal contrastive InfoNCE loss for protein embeddings.

        Parameters:
        - protein_embeddings: A tensor representing the embeddings of the protein sequences.
        - batch_size: Batch size used for training.

        Steps:
        1. Normalize the protein embeddings using L2 normalization.
        2. Compute the cosine similarity between the normalized embeddings.
        3. Mask the diagonal of the cosine similarity matrix to avoid using a protein's similarity with itself.
        4. Define positive examples by rolling the mask. The positive example for a given protein embedding is determined by an embedding half the batch size away.
        5. Compute the InfoNCE loss using the masked cosine similarity matrix.

        Returns:
        - Mean InfoNCE loss for the given batch of protein embeddings.
        - The cosine similarity matrix.

        Note: The underlying assumption is that in each batch, corresponding positive samples for a given protein embedding 
        lie half the batch size away. The function computes the negative log likelihood loss between these positive samples 
        and the entire batch.
        """
        
        # l2 normalization
        #norm_protein_embeddings = F.normalize(protein_embeddings, p=2, dim=1)
        norm_protein_embeddings = protein_embeddings

        # cosine similarity
        cosine_similarity = (norm_protein_embeddings @ norm_protein_embeddings.T) / self.temperature
        
        # mask cosine similarity matrix
        sample_size = protein_embeddings.shape[0]
        mask = torch.eye(sample_size, device=cosine_similarity.device, dtype=torch.bool)
        #cosine_similarity.masked_fill_(mask, float(-9e15))
        cosine_similarity = self.set_inf(cosine_similarity, mask)
        
        # Find positive example -> batch_size //2 away from the original example (swiss-prot<>pfam)
        pos_mask = mask.roll(shifts=mask.shape[0]//2, dims=0)

        # InfoNCE loss
        nll = -cosine_similarity[pos_mask] + torch.logsumexp(cosine_similarity, dim=-1)
        
        return (
            nll.mean(),
            cosine_similarity.cpu(),
        )

    def set_inf(
            self,
            tensor: torch.Tensor,
            mask: torch.Tensor
        ) -> torch.Tensor:
        # Determine replacement value based on tensor dtype
        if tensor.dtype == torch.float32:
            replace_value = -9e15
        elif tensor.dtype == torch.float16:
            replace_value = -1e4
        else:
            raise ValueError("Unsupported tensor dtype for this operation.")

        # Use masked_fill_ to replace positions in tensor where mask is True with the specified value
        tensor.masked_fill_(mask, replace_value)

        return tensor

    def cross_entropy(
            self,
            preds: torch.Tensor,
            targets: torch.Tensor,
            reduction: str='none'
        ) -> torch.Tensor:

        # compute categorical cross entropy
        log_softmax = nn.LogSoftmax(dim=-1)
        loss = (-targets * log_softmax(preds)).sum(1)

        if reduction == 'none':
            return loss
        elif reduction == 'mean':
            return loss.mean()
        else:
            assert False, print('Choose either "none" or "mean" for reduction argument')

    def compute_masked_lang_loss(
            self,
            logits_masked: torch.Tensor,
            targets: torch.Tensor,
            targets_masked: torch.Tensor,
            mask_token_id: torch.Tensor
        ) -> torch.Tensor:
        
        """
        Compute the masked language model loss for BERT-like architectures.

        Given a batch of logits predicted for masked positions and their corresponding target tokens, this function 
        computes the cross-entropy loss between the predicted logits and the true labels, but only for positions 
        that have been masked in the input.

        Parameters:
        - logits_masked: Predicted token logits for masked positions from the model.
                         Shape: (batch_size, seq_len, vocab_size).
        - targets: True token IDs for each position in the input sequence.
                   Shape: (batch_size, seq_len).
        - targets_masked: Token IDs for the input sequence, including masked positions.
                          Shape: (batch_size, seq_len).
        - mask_token_id: The ID corresponding to the [MASK] token in the vocabulary.

        Steps:
        1. Compute the cross-entropy loss between predicted logits and true labels across all positions.
        2. For each sample in the batch, locate the positions that were masked.
        3. Extract the loss values corresponding to these masked positions.
        4. Compute and return the mean of these extracted loss values across the batch.

        Returns:
        - Mean cross-entropy loss for masked positions across the batch.

        Note: This function focuses exclusively on masked positions in the input, as is typical for the MLM objective 
        in BERT-like models. It disregards unmasked positions.
        """

        # compute the masked langauge objective loss for masked logits
        loss_func = nn.CrossEntropyLoss(reduction='none')
        loss_mask = loss_func(
                            logits_masked.permute(0, 2, 1), # (batch_size, vocab_size, seq_len)
                            targets.squeeze(1) # (batch_size, seq_len)
        )

        # list to append loss values
        batch_loss = []

        for ii, target_mask_sample in enumerate(targets_masked):
            
            # locate mask positions 
            masked_positions = (target_mask_sample == mask_token_id).tolist()
            # extract the loss values at those masked positions
            loss_mask_sample = loss_mask[ii][masked_positions]
            
            # append mean loss value for a given batch sample
            if loss_mask_sample.numel() > 0:
                batch_loss.append(torch.mean(loss_mask_sample).unsqueeze(0))
        
        if len(loss_mask_sample) > 0:
            loss_mask_mean = torch.mean(torch.cat(batch_loss))
        else:
            # handle the case where there are no masked positions in any sample 
            loss_mask_mean = torch.tensor(0.0, device=logits_masked.device)

        return loss_mask_mean


###############
# Facilitator #
###############


class Facilitator(nn.Module):

    def __init__(self,
                 in_dim: int,  # Input dimension
                 hid_dim: int,  # Hidden layer dimension
                 out_dim: int,  # Output dimension
                 dropout: float = 0.  # Dropout rate
                 ):
        super().__init__()

        # Main neural network structure
        self.main = nn.Sequential(
            weight_norm(nn.Linear(in_dim, hid_dim), dim=None),  # Weight-normalized linear layer
            nn.GELU(),  # GELU activation function
            nn.Dropout(dropout, inplace=True),  # Dropout layer
            weight_norm(nn.Linear(hid_dim, out_dim), dim=None)  # Weight-normalized output layer
        )

    def forward(self, x):
        # Forward pass through the network
        return self.main(x)

    def compute_loss(self, output: torch.Tensor, target: torch.Tensor, loss_option='MSE') -> torch.Tensor:
        # Compute loss based on the chosen loss_option ('MSE' or 'MMD')
        if loss_option == 'MSE':
            return Facilitator.compute_MSE(output, target)
        elif loss_option == 'MMD':
            return Facilitator.compute_mmd(output, target)
        else:
            return ValueError("Invalid loss option")
    
    @staticmethod
    def compute_MSE(output, target):
        # Compute Mean Squared Error between output and target
        mse_loss = nn.MSELoss()
        loss = mse_loss(output, target)
        return loss

    @staticmethod
    def compute_kernel(
            x: torch.FloatTensor,
            y: torch.FloatTensor
        ) -> torch.FloatTensor:
        """
        Compute the Gaussian RBF kernel between tensors x and y
        """

        # Get the sizes of each mini-batch
        x_size, y_size = x.shape[0], y.shape[0]

        # Dimension based on z size
        dim = x.shape[1]

        x = x.view(x_size, 1, dim)
        y = y.view(1, y_size, dim)

        x_core = x.expand(x_size, y_size, dim)
        y_core = y.expand(x_size, y_size, dim)

        # Gaussian RBF kernel computation
        return torch.exp(-(x_core - y_core).pow(2).mean(2) / dim)

    @staticmethod
    def compute_mmd(
            x: torch.FloatTensor,
            y: torch.FloatTensor
        ) -> torch.FloatTensor:
        """
        Compute the Maximum Mean Discrepancy (MMD) between two distributions.
        Args:
            x: Samples from first distribution (z_t_to_p ~ q(z_p))
            y: Samples from second distribution (z_p ~ p(z_p))
        Returns:
            MMD_loss: The MMD loss between the sampled distributions
        """

        x_kernel = Facilitator.compute_kernel(x, x)
        y_kernel = Facilitator.compute_kernel(y, y)
        xy_kernel = Facilitator.compute_kernel(x, y)

        # Calculate MMD loss
        return x_kernel.mean() + y_kernel.mean() - 2 * xy_kernel.mean()