File size: 14,747 Bytes
780ce89 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 |
{
"policy_class": {
":type:": "<class 'abc.ABCMeta'>",
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
"__module__": "stable_baselines3.common.policies",
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f649e1b5790>",
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f649e1b5820>",
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f649e1b58b0>",
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f649e1b5940>",
"_build": "<function ActorCriticPolicy._build at 0x7f649e1b59d0>",
"forward": "<function ActorCriticPolicy.forward at 0x7f649e1b5a60>",
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f649e1b5af0>",
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f649e1b5b80>",
"_predict": "<function ActorCriticPolicy._predict at 0x7f649e1b5c10>",
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f649e1b5ca0>",
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f649e1b5d30>",
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f649e1b5dc0>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc_data object at 0x7f649e1aed80>"
},
"verbose": 1,
"policy_kwargs": {
":type:": "<class 'dict'>",
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
"log_std_init": -2,
"ortho_init": false,
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
"optimizer_kwargs": {
"alpha": 0.99,
"eps": 1e-05,
"weight_decay": 0
}
},
"observation_space": {
":type:": "<class 'gym.spaces.box.Box'>",
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
"dtype": "float32",
"_shape": [
28
],
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
"_np_random": null
},
"action_space": {
":type:": "<class 'gym.spaces.box.Box'>",
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
"dtype": "float32",
"_shape": [
8
],
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
"bounded_below": "[ True True True True True True True True]",
"bounded_above": "[ True True True True True True True True]",
"_np_random": null
},
"n_envs": 4,
"num_timesteps": 2000000,
"_total_timesteps": 2000000,
"_num_timesteps_at_start": 0,
"seed": null,
"action_noise": null,
"start_time": 1676498894541207572,
"learning_rate": 0.00095,
"tensorboard_log": null,
"lr_schedule": {
":type:": "<class 'function'>",
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/TyEtdzGPxYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
},
"_last_obs": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAANLC7b2qMkw/eELEPiM50j/TV8O/Z3qLPGgbSD9pEu08j+eNP8McAL8FSBA/TdDYPrw/qb+SJxo+Iy/4u7dXYr8SCZi/eqtJPP0/ST/AbbO9ctI7PoHjUT9X0GW//jAiP8Subz9rmBXAMHEMP6wthb9E005AK9NzPQTECD9Gq66/NedeP9Tz5L+wN7u+iLK3Pwf9J78Biby9yhAtwF4fgLwWerw+4h9OvkS8TD8OaJLAGhorvkF1pD+42uE/qH3DPDczBr7PRda/OqShv2YJBkDOtoi/a5gVwP5R6b+sLYW/H7PKvT78GL+D9Ko+CJwZPz9BrL4xWFM/FiGFP85mNz4pNtg+gf6uv+HR7L4t5Py/HZ5Lvz4vuD7yVJC/Xac8P3walL5XC3a+3ANFP1W+Y74AEEk/N/pjv6jSTL0VAQI/zraIv08L2z4wcQw/vwt2P29ubD/TB7W93GMEPy5i5j9CEqI/5E5QP7vbGj+efXS+A30TPmfJhL+a5oC/hklbPx/oFD/7hK0+i+g4v+2gCEDy4KQ/0Sr5vi6EA7+fqKa/txIKvDosL8AX714/wrToPs62iL9PC9s+/lHpv78Ldj+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
},
"_last_episode_starts": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
},
"_last_original_obs": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACFTt00AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAR51IvAAAAAD2Hui/AAAAAHjc1T0AAAAA+D3iPwAAAABG34Q8AAAAAHnQ3D8AAAAA/ZjlPQAAAAAMf96/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWiPiNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgNsVAL4AAAAA1hb9vwAAAAAH4rU8AAAAAO7m/T8AAAAAKaXfPQAAAABtmd8/AAAAALWYPr0AAAAA8HTdvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAbLSjUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDNRoU9AAAAACyl/b8AAAAAHfNHvQAAAAC58f4/AAAAAJaDHj0AAAAAJeP9PwAAAABILuK9AAAAAKcu8r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABfBkQ2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAH7FTvQAAAACEYtq/AAAAAKSAlb0AAAAAs4jpPwAAAADlpIM9AAAAAOdM9D8AAAAAMee1vQAAAABtAeW/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
},
"_episode_num": 0,
"use_sde": true,
"sde_sample_freq": -1,
"_current_progress_remaining": 0.0,
"ep_info_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJrjq+ueSSyMAWyUTegDjAF0lEdAsTfdeOXE63V9lChoBkdAmlZMKohpxmgHTegDaAhHQLE4w1VHWjJ1fZQoaAZHQJvuZPwd8zBoB03oA2gIR0CxO9MwxnFpdX2UKGgGR0Cdq/tpmEoOaAdN6ANoCEdAsTy33UQTVXV9lChoBkdAmzGzbnHNo2gHTegDaAhHQLFBXlMRHwx1fZQoaAZHQJtwIn+hoM9oB03oA2gIR0CxQhGrCFbndX2UKGgGR0CbKxWdVea8aAdN6ANoCEdAsUQrVoYek3V9lChoBkdAnFcjaPCEYmgHTegDaAhHQLFEvs+3Yth1fZQoaAZHQJ4OBcdHUc5oB03oA2gIR0CxSLCrHU+cdX2UKGgGR0CdBtzj3mFKaAdN6ANoCEdAsUm5hy8zynV9lChoBkdAnXBAKrq+rWgHTegDaAhHQLFM1ta6jFh1fZQoaAZHQJuVyOMl1KZoB03oA2gIR0CxTbj8k2P1dX2UKGgGR0Cc07Q7tAs1aAdN6ANoCEdAsVI1pnHvMXV9lChoBkdAnavk2Hck+2gHTegDaAhHQLFS5UPQOWl1fZQoaAZHQJwGCXokiUxoB03oA2gIR0CxVPY9s7+2dX2UKGgGR0Cd+ZWOIZZTaAdN6ANoCEdAsVWJcpsoD3V9lChoBkdAmXz8CPp6hWgHTegDaAhHQLFZtg2ZRbd1fZQoaAZHQJuND6O5rgxoB03oA2gIR0CxWr4wAU+LdX2UKGgGR0Cd/VQoTfzjaAdN6ANoCEdAsV3nJW/8EXV9lChoBkdAnRDL/jsD4mgHTegDaAhHQLFezHlwLmZ1fZQoaAZHQJ5CbQqqfe1oB03oA2gIR0CxYw+A/cFhdX2UKGgGR0Cbq/3WnTAnaAdN6ANoCEdAsWPFGqgh83V9lChoBkdAnS37lFMIvGgHTegDaAhHQLFl5Y1pCa91fZQoaAZHQJ4II/SpiqhoB03oA2gIR0CxZniNOuaGdX2UKGgGR0CdgnGgBcRlaAdN6ANoCEdAsWq8j3VTaXV9lChoBkdAnSgbeuV5bGgHTegDaAhHQLFryktmL+B1fZQoaAZHQJ4ZTdSEUTNoB03oA2gIR0CxbxKAvtdBdX2UKGgGR0CcHr8JD3M7aAdN6ANoCEdAsW/4iC8OC3V9lChoBkdAmz8jNY8uBmgHTegDaAhHQLF0C717IDJ1fZQoaAZHQJc9+FcpsoFoB03oA2gIR0CxdMGSpzcRdX2UKGgGR0CYRCCZ4Oc2aAdN6ANoCEdAsXbSOsDGLnV9lChoBkdAnfJQyIpH7WgHTegDaAhHQLF3ZaJQ+EB1fZQoaAZHQJ4U+S/0ulJoB03oA2gIR0Cxe9jm8ujAdX2UKGgGR0CfGmKNhmXgaAdN6ANoCEdAsXzd72L5ynV9lChoBkdAnewn7cfvF2gHTegDaAhHQLGAJngpBop1fZQoaAZHQJ3U3Tc6/7BoB03oA2gIR0CxgOhh2GIsdX2UKGgGR0Cf76fBeokzaAdN6ANoCEdAsYTfK0UoKHV9lChoBkdAn2T1Wn0kGGgHTegDaAhHQLGFlRigCfZ1fZQoaAZHQJ3+6vxH5JtoB03oA2gIR0Cxh7emixmkdX2UKGgGR0Ceew/r0J4TaAdN6ANoCEdAsYhKAEt/WnV9lChoBkdAnoy0uL74z2gHTegDaAhHQLGNDn7Hhjx1fZQoaAZHQJryEKG+K0loB03oA2gIR0CxjiheTmnwdX2UKGgGR0CcYW1NQCSzaAdN6ANoCEdAsZFWM4tHx3V9lChoBkdAnWXk/bCaZ2gHTegDaAhHQLGR6mKZUkx1fZQoaAZHQJ5IslpoK2NoB03oA2gIR0CxlfNSqEOBdX2UKGgGR0CfzmNO/L1VaAdN6ANoCEdAsZauIMz/InV9lChoBkdAn9mUmtyPuGgHTegDaAhHQLGYyXyiEg51fZQoaAZHQJ03gdRzijtoB03oA2gIR0CxmVvthNM5dX2UKGgGR0CdOKSSvC/HaAdN6ANoCEdAsZ5evbGm13V9lChoBkdAnGVW5H3DemgHTegDaAhHQLGfeY9Pk7x1fZQoaAZHQJ/t3vAoG6hoB03oA2gIR0CxolsnmaH9dX2UKGgGR0CgYo3Mpw0gaAdN6ANoCEdAsaLykzoECHV9lChoBkdAoIPi4FzMimgHTegDaAhHQLGm9XkHUtt1fZQoaAZHQJtMqjsUqQRoB03oA2gIR0Cxp63dKujidX2UKGgGR0CedXgc94eLaAdN6ANoCEdAsanR90A93nV9lChoBkdAnCrion8baWgHTegDaAhHQLGqZVMEidJ1fZQoaAZHQJys08EFGG5oB03oA2gIR0Cxr9R3mmtRdX2UKGgGR0CdUvJLdvbXaAdN6ANoCEdAsbD4oZydWnV9lChoBkdAnpk7IT4+KWgHTegDaAhHQLGzeM23rlh1fZQoaAZHQJ2vm8XenAJoB03oA2gIR0CxtAuogmqpdX2UKGgGR0CcRaRGc4HYaAdN6ANoCEdAsbgSYXwb2nV9lChoBkdAnr3ChWYF7mgHTegDaAhHQLG40JQtSQ51fZQoaAZHQJyfwsvqTr5oB03oA2gIR0CxuvD8pCrtdX2UKGgGR0CePHnBciW3aAdN6ANoCEdAsbuIfr8iwHV9lChoBkdAncibxAjY7WgHTegDaAhHQLHBQeUpuuR1fZQoaAZHQJsPRn/T9bZoB03oA2gIR0Cxwlud07r+dX2UKGgGR0CerQSF49owaAdN6ANoCEdAscR0aESM+HV9lChoBkdAnV8nbh3qzWgHTegDaAhHQLHFCO9WZJF1fZQoaAZHQJ64tJkGzKNoB03oA2gIR0CxyQ39NvfkdX2UKGgGR0CeXTwgDA8CaAdN6ANoCEdAscnGSTyJ9HV9lChoBkdAnUP9NrTH82gHTegDaAhHQLHL4oZydWh1fZQoaAZHQJou1Q3xWktoB03oA2gIR0CxzHvmPo3adX2UKGgGR0CePbG1hLGraAdN6ANoCEdAsdKS1w5vL3V9lChoBkdAnwaQpvxYrGgHTegDaAhHQLHTYD7Ikqt1fZQoaAZHQJ0i3TQVsUJoB03oA2gIR0Cx1XrQswtbdX2UKGgGR0CeT8UVi4KAaAdN6ANoCEdAsdYLXXiBG3V9lChoBkdAnn/lfmcOLGgHTegDaAhHQLHaDfj0cwR1fZQoaAZHQKBVQ8xsVL1oB03oA2gIR0Cx2sFHFxXGdX2UKGgGR0CcTYhddE9daAdN6ANoCEdAsdzdZ2ZAp3V9lChoBkdAn1fp04iosWgHTegDaAhHQLHdtHI6r/91fZQoaAZHQJ61k8YAKfFoB03oA2gIR0Cx4436InBtdX2UKGgGR0CcMQHt4RmLaAdN6ANoCEdAseRCcTakAXV9lChoBkdAnOJYuK4x12gHTegDaAhHQLHmV4MF2V51fZQoaAZHQKDVruYx+KFoB03oA2gIR0Cx5um6PKdQdX2UKGgGR0CgC82MbWEsaAdN6ANoCEdAsernOqvNeXV9lChoBkdAnzZNTo+wDGgHTegDaAhHQLHrm0OmR/51fZQoaAZHQJ7ZhCfHxSZoB03oA2gIR0Cx7fI1UEPldX2UKGgGR0CgQNCUHIIXaAdN6ANoCEdAse7Gbe/HpHV9lChoBkdAoC7PoLXtjWgHTegDaAhHQLH0YWbwz+F1fZQoaAZHQJ7nCO2iL2poB03oA2gIR0Cx9R6S9ugpdX2UKGgGR0Cdf5ha1TisaAdN6ANoCEdAsfc+6+WWyHV9lChoBkdAnqyU7nxJ/WgHTegDaAhHQLH301YQrc11fZQoaAZHQJ+x05uIhyNoB03oA2gIR0Cx+9VFQVKxdX2UKGgGR0Ce153IdU83aAdN6ANoCEdAsfyJAkcCHXV9lChoBkdAoNjo1WKdhGgHTegDaAhHQLH/H3EQ5FR1fZQoaAZHQJ/e4YqG1x9oB03oA2gIR0Cx//XZK3/hdX2UKGgGR0CewLr9VFQVaAdN6ANoCEdAsgVs6r/823V9lChoBkdAnstA482aUmgHTegDaAhHQLIGJrf+CK91fZQoaAZHQJ2/FopQUHpoB03oA2gIR0CyCEfmT1TSdX2UKGgGR0CenI99tuUEaAdN6ANoCEdAsgjbWiDdxnVlLg=="
},
"ep_success_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
},
"_n_updates": 62732,
"n_steps": 8,
"gamma": 0.99,
"gae_lambda": 0.9,
"ent_coef": 0.0,
"vf_coef": 0.4,
"max_grad_norm": 0.5,
"normalize_advantage": false
} |