File size: 35,982 Bytes
78d5c4f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 |
# coding=utf-8
# Copyright 2023 Language Technology Group from University of Oslo and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch LTG-BERT model."""
import math
from typing import List, Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils import checkpoint
from .configuration_ltgbert import LtgBertConfig
from transformers.modeling_utils import PreTrainedModel
from transformers.activations import gelu_new
from transformers.modeling_outputs import (
MaskedLMOutput,
MultipleChoiceModelOutput,
QuestionAnsweringModelOutput,
SequenceClassifierOutput,
TokenClassifierOutput,
BaseModelOutput
)
from transformers.pytorch_utils import softmax_backward_data
from transformers.utils import add_start_docstrings, add_start_docstrings_to_model_forward
_CHECKPOINT_FOR_DOC = "ltg/bnc-bert-span"
_CONFIG_FOR_DOC = "LtgBertConfig"
LTG_BERT_PRETRAINED_MODEL_ARCHIVE_LIST = [
"bnc-bert-span",
"bnc-bert-span-2x",
"bnc-bert-span-0.5x",
"bnc-bert-span-0.25x",
"bnc-bert-span-order",
"bnc-bert-span-document",
"bnc-bert-span-word",
"bnc-bert-span-subword",
"norbert3-xs",
"norbert3-small",
"norbert3-base",
"norbert3-large",
"norbert3-oversampled-base",
"norbert3-ncc-base",
"norbert3-nak-base",
"norbert3-nb-base",
"norbert3-wiki-base",
"norbert3-c4-base"
]
class Encoder(nn.Module):
def __init__(self, config, activation_checkpointing=False):
super().__init__()
self.layers = nn.ModuleList([EncoderLayer(config) for _ in range(config.num_hidden_layers)])
for i, layer in enumerate(self.layers):
layer.mlp.mlp[1].weight.data *= math.sqrt(1.0 / (2.0 * (1 + i)))
layer.mlp.mlp[-2].weight.data *= math.sqrt(1.0 / (2.0 * (1 + i)))
self.activation_checkpointing = activation_checkpointing
def forward(self, hidden_states, attention_mask, relative_embedding):
hidden_states, attention_probs = [hidden_states], []
for layer in self.layers:
if self.activation_checkpointing:
hidden_state, attention_p = checkpoint.checkpoint(layer, hidden_states[-1], attention_mask, relative_embedding)
else:
hidden_state, attention_p = layer(hidden_states[-1], attention_mask, relative_embedding)
hidden_states.append(hidden_state)
attention_probs.append(attention_p)
return hidden_states, attention_probs
class MaskClassifier(nn.Module):
def __init__(self, config, subword_embedding):
super().__init__()
self.nonlinearity = nn.Sequential(
nn.LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=False),
nn.Linear(config.hidden_size, config.hidden_size),
nn.GELU(),
nn.LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=False),
nn.Dropout(config.hidden_dropout_prob),
nn.Linear(subword_embedding.size(1), subword_embedding.size(0))
)
self.initialize(config.hidden_size, subword_embedding)
def initialize(self, hidden_size, embedding):
std = math.sqrt(2.0 / (5.0 * hidden_size))
nn.init.trunc_normal_(self.nonlinearity[1].weight, mean=0.0, std=std, a=-2*std, b=2*std)
self.nonlinearity[-1].weight = embedding
self.nonlinearity[1].bias.data.zero_()
self.nonlinearity[-1].bias.data.zero_()
def forward(self, x, masked_lm_labels=None):
if masked_lm_labels is not None:
x = torch.index_select(x.flatten(0, 1), 0, torch.nonzero(masked_lm_labels.flatten() != -100).squeeze())
x = self.nonlinearity(x)
return x
class EncoderLayer(nn.Module):
def __init__(self, config):
super().__init__()
self.attention = Attention(config)
self.mlp = FeedForward(config)
def forward(self, x, padding_mask, relative_embedding):
attention_output, attention_probs = self.attention(x, padding_mask, relative_embedding)
x = x + attention_output
x = x + self.mlp(x)
return x, attention_probs
class GeGLU(nn.Module):
def forward(self, x):
x, gate = x.chunk(2, dim=-1)
x = x * gelu_new(gate)
return x
class FeedForward(nn.Module):
def __init__(self, config):
super().__init__()
self.mlp = nn.Sequential(
nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps, elementwise_affine=False),
nn.Linear(config.hidden_size, 2*config.intermediate_size, bias=False),
GeGLU(),
nn.LayerNorm(config.intermediate_size, eps=config.layer_norm_eps, elementwise_affine=False),
nn.Linear(config.intermediate_size, config.hidden_size, bias=False),
nn.Dropout(config.hidden_dropout_prob)
)
self.initialize(config.hidden_size)
def initialize(self, hidden_size):
std = math.sqrt(2.0 / (5.0 * hidden_size))
nn.init.trunc_normal_(self.mlp[1].weight, mean=0.0, std=std, a=-2*std, b=2*std)
nn.init.trunc_normal_(self.mlp[-2].weight, mean=0.0, std=std, a=-2*std, b=2*std)
def forward(self, x):
return self.mlp(x)
class MaskedSoftmax(torch.autograd.Function):
@staticmethod
def forward(self, x, mask, dim):
self.dim = dim
x.masked_fill_(mask, float('-inf'))
x = torch.softmax(x, self.dim)
x.masked_fill_(mask, 0.0)
self.save_for_backward(x)
return x
@staticmethod
def backward(self, grad_output):
output, = self.saved_tensors
input_grad = softmax_backward_data(self, grad_output, output, self.dim, output)
return input_grad, None, None
class Attention(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
if config.hidden_size % config.num_attention_heads != 0:
raise ValueError(f"The hidden size {config.hidden_size} is not a multiple of the number of attention heads {config.num_attention_heads}")
self.hidden_size = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_size = config.hidden_size // config.num_attention_heads
self.in_proj_qk = nn.Linear(config.hidden_size, 2*config.hidden_size, bias=True)
self.in_proj_v = nn.Linear(config.hidden_size, config.hidden_size, bias=True)
self.out_proj = nn.Linear(config.hidden_size, config.hidden_size, bias=True)
self.pre_layer_norm = nn.LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=False)
self.post_layer_norm = nn.LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=True)
position_indices = torch.arange(config.max_position_embeddings, dtype=torch.long).unsqueeze(1) \
- torch.arange(config.max_position_embeddings, dtype=torch.long).unsqueeze(0)
position_indices = self.make_log_bucket_position(position_indices, config.position_bucket_size, config.max_position_embeddings)
position_indices = config.position_bucket_size - 1 + position_indices
self.register_buffer("position_indices", position_indices, persistent=True)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
self.scale = 1.0 / math.sqrt(3 * self.head_size)
self.initialize()
def make_log_bucket_position(self, relative_pos, bucket_size, max_position):
sign = torch.sign(relative_pos)
mid = bucket_size // 2
abs_pos = torch.where((relative_pos < mid) & (relative_pos > -mid), mid - 1, torch.abs(relative_pos).clamp(max=max_position - 1))
log_pos = torch.ceil(torch.log(abs_pos / mid) / math.log((max_position-1) / mid) * (mid - 1)).int() + mid
bucket_pos = torch.where(abs_pos <= mid, relative_pos, log_pos * sign).long()
return bucket_pos
def initialize(self):
std = math.sqrt(2.0 / (5.0 * self.hidden_size))
nn.init.trunc_normal_(self.in_proj_qk.weight, mean=0.0, std=std, a=-2*std, b=2*std)
nn.init.trunc_normal_(self.in_proj_v.weight, mean=0.0, std=std, a=-2*std, b=2*std)
nn.init.trunc_normal_(self.out_proj.weight, mean=0.0, std=std, a=-2*std, b=2*std)
self.in_proj_qk.bias.data.zero_()
self.in_proj_v.bias.data.zero_()
self.out_proj.bias.data.zero_()
def compute_attention_scores(self, hidden_states, relative_embedding):
key_len, batch_size, _ = hidden_states.size()
query_len = key_len
if self.position_indices.size(0) < query_len:
position_indices = torch.arange(query_len, dtype=torch.long).unsqueeze(1) \
- torch.arange(query_len, dtype=torch.long).unsqueeze(0)
position_indices = self.make_log_bucket_position(position_indices, self.config.position_bucket_size, 512)
position_indices = self.config.position_bucket_size - 1 + position_indices
self.position_indices = position_indices.to(hidden_states.device)
hidden_states = self.pre_layer_norm(hidden_states)
query, key = self.in_proj_qk(hidden_states).chunk(2, dim=2) # shape: [T, B, D]
value = self.in_proj_v(hidden_states) # shape: [T, B, D]
query = query.reshape(query_len, batch_size * self.num_heads, self.head_size).transpose(0, 1)
key = key.reshape(key_len, batch_size * self.num_heads, self.head_size).transpose(0, 1)
value = value.view(key_len, batch_size * self.num_heads, self.head_size).transpose(0, 1)
attention_scores = torch.bmm(query, key.transpose(1, 2) * self.scale)
query_pos, key_pos = self.in_proj_qk(self.dropout(relative_embedding)).chunk(2, dim=-1) # shape: [2T-1, D]
query_pos = query_pos.view(-1, self.num_heads, self.head_size) # shape: [2T-1, H, D]
key_pos = key_pos.view(-1, self.num_heads, self.head_size) # shape: [2T-1, H, D]
query = query.view(batch_size, self.num_heads, query_len, self.head_size)
key = key.view(batch_size, self.num_heads, query_len, self.head_size)
attention_c_p = torch.einsum("bhqd,khd->bhqk", query, key_pos.squeeze(1) * self.scale)
attention_p_c = torch.einsum("bhkd,qhd->bhqk", key * self.scale, query_pos.squeeze(1))
position_indices = self.position_indices[:query_len, :key_len].expand(batch_size, self.num_heads, -1, -1)
attention_c_p = attention_c_p.gather(3, position_indices)
attention_p_c = attention_p_c.gather(2, position_indices)
attention_scores = attention_scores.view(batch_size, self.num_heads, query_len, key_len)
attention_scores.add_(attention_c_p)
attention_scores.add_(attention_p_c)
return attention_scores, value
def compute_output(self, attention_probs, value):
attention_probs = self.dropout(attention_probs)
context = torch.bmm(attention_probs.flatten(0, 1), value) # shape: [B*H, Q, D]
context = context.transpose(0, 1).reshape(context.size(1), -1, self.hidden_size) # shape: [Q, B, H*D]
context = self.out_proj(context)
context = self.post_layer_norm(context)
context = self.dropout(context)
return context
def forward(self, hidden_states, attention_mask, relative_embedding):
attention_scores, value = self.compute_attention_scores(hidden_states, relative_embedding)
attention_probs = MaskedSoftmax.apply(attention_scores, attention_mask, -1)
return self.compute_output(attention_probs, value), attention_probs.detach()
class Embedding(nn.Module):
def __init__(self, config):
super().__init__()
self.hidden_size = config.hidden_size
self.word_embedding = nn.Embedding(config.vocab_size, config.hidden_size)
self.word_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps, elementwise_affine=False)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.relative_embedding = nn.Parameter(torch.empty(2 * config.position_bucket_size - 1, config.hidden_size))
self.relative_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.initialize()
def initialize(self):
std = math.sqrt(2.0 / (5.0 * self.hidden_size))
nn.init.trunc_normal_(self.relative_embedding, mean=0.0, std=std, a=-2*std, b=2*std)
nn.init.trunc_normal_(self.word_embedding.weight, mean=0.0, std=std, a=-2*std, b=2*std)
def forward(self, input_ids):
word_embedding = self.dropout(self.word_layer_norm(self.word_embedding(input_ids)))
relative_embeddings = self.relative_layer_norm(self.relative_embedding)
return word_embedding, relative_embeddings
#
# HuggingFace wrappers
#
class LtgBertPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = LtgBertConfig
base_model_prefix = "bnc-bert"
supports_gradient_checkpointing = True
def _set_gradient_checkpointing(self, module, value=False):
if isinstance(module, Encoder):
module.activation_checkpointing = value
def _init_weights(self, _):
pass # everything is already initialized
LTG_BERT_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`LtgBertConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
LTG_BERT_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare LTG-BERT transformer outputting raw hidden-states without any specific head on top.",
LTG_BERT_START_DOCSTRING,
)
class LtgBertModel(LtgBertPreTrainedModel):
def __init__(self, config, add_mlm_layer=False):
super().__init__(config)
self.config = config
self.embedding = Embedding(config)
self.transformer = Encoder(config, activation_checkpointing=False)
self.classifier = MaskClassifier(config, self.embedding.word_embedding.weight) if add_mlm_layer else None
def get_input_embeddings(self):
return self.embedding.word_embedding
def set_input_embeddings(self, value):
self.embedding.word_embedding = value
def get_contextualized_embeddings(
self,
input_ids: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None
) -> List[torch.Tensor]:
if input_ids is not None:
input_shape = input_ids.size()
else:
raise ValueError("You have to specify input_ids")
batch_size, seq_length = input_shape
device = input_ids.device
if attention_mask is None:
attention_mask = torch.zeros(batch_size, seq_length, dtype=torch.bool, device=device)
else:
attention_mask = ~attention_mask.bool()
attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
static_embeddings, relative_embedding = self.embedding(input_ids.t())
contextualized_embeddings, attention_probs = self.transformer(static_embeddings, attention_mask, relative_embedding)
contextualized_embeddings = [e.transpose(0, 1) for e in contextualized_embeddings]
last_layer = contextualized_embeddings[-1]
contextualized_embeddings = [contextualized_embeddings[0]] + [
contextualized_embeddings[i] - contextualized_embeddings[i - 1]
for i in range(1, len(contextualized_embeddings))
]
return last_layer, contextualized_embeddings, attention_probs
@add_start_docstrings_to_model_forward(LTG_BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
output_hidden_states: Optional[bool] = None,
output_attentions: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], BaseModelOutput]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
sequence_output, contextualized_embeddings, attention_probs = self.get_contextualized_embeddings(input_ids=input_ids,
attention_mask=attention_mask)
if not return_dict:
return (
sequence_output,
*([contextualized_embeddings] if output_hidden_states else []),
*([attention_probs] if output_attentions else [])
)
return BaseModelOutput(
last_hidden_state=sequence_output,
hidden_states=contextualized_embeddings if output_hidden_states else None,
attentions=attention_probs if output_attentions else None
)
@add_start_docstrings("""LTG-BERT model with a `language modeling` head on top.""", LTG_BERT_START_DOCSTRING)
class LtgBertForMaskedLM(LtgBertModel):
_keys_to_ignore_on_load_unexpected = ["head"]
def __init__(self, config):
super().__init__(config, add_mlm_layer=True)
def get_output_embeddings(self):
return self.classifier.nonlinearity[-1].weight
def set_output_embeddings(self, new_embeddings):
self.classifier.nonlinearity[-1].weight = new_embeddings
@add_start_docstrings_to_model_forward(LTG_BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
output_hidden_states: Optional[bool] = None,
output_attentions: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: Optional[torch.LongTensor] = None,
) -> Union[Tuple[torch.Tensor], MaskedLMOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
sequence_output, contextualized_embeddings, attention_probs = self.get_contextualized_embeddings(input_ids=input_ids,
attention_mask=attention_mask)
subword_prediction = self.classifier(sequence_output)
masked_lm_loss = None
if labels is not None:
masked_lm_loss = F.cross_entropy(subword_prediction.flatten(0, 1), labels.flatten())
if not return_dict:
output = (
subword_prediction,
*([contextualized_embeddings] if output_hidden_states else []),
*([attention_probs] if output_attentions else [])
)
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
return MaskedLMOutput(
loss=masked_lm_loss,
logits=subword_prediction,
hidden_states=contextualized_embeddings if output_hidden_states else None,
attentions=attention_probs if output_attentions else None
)
class Classifier(nn.Module):
def __init__(self, config, num_labels: int):
super().__init__()
drop_out = getattr(config, "classifier_dropout", config.hidden_dropout_prob)
self.nonlinearity = nn.Sequential(
nn.LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=False),
nn.Linear(config.hidden_size, config.hidden_size),
nn.GELU(),
nn.LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=False),
nn.Dropout(drop_out),
nn.Linear(config.hidden_size, num_labels)
)
self.initialize(config.hidden_size)
def initialize(self, hidden_size):
std = math.sqrt(2.0 / (5.0 * hidden_size))
nn.init.trunc_normal_(self.nonlinearity[1].weight, mean=0.0, std=std, a=-2*std, b=2*std)
nn.init.trunc_normal_(self.nonlinearity[-1].weight, mean=0.0, std=std, a=-2*std, b=2*std)
self.nonlinearity[1].bias.data.zero_()
self.nonlinearity[-1].bias.data.zero_()
def forward(self, x):
x = self.nonlinearity(x)
return x
@add_start_docstrings(
"""
LTG-BERT model with a sequence classification/regression head on top (a linear layer on top of the pooled
output) e.g. for GLUE tasks.
""",
LTG_BERT_START_DOCSTRING,
)
class LtgBertForSequenceClassification(LtgBertModel):
_keys_to_ignore_on_load_unexpected = ["classifier"]
_keys_to_ignore_on_load_missing = ["head"]
def __init__(self, config):
super().__init__(config, add_mlm_layer=False)
self.num_labels = config.num_labels
# self.head = Classifier(config, self.num_labels)
self.config = config
classifier_dropout = (
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
)
self.dropout = nn.Dropout(classifier_dropout)
self.head = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(LTG_BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
inputs_embeds: Optional[torch.Tensor] = None,
return_dict: Optional[bool] = None,
labels: Optional[torch.LongTensor] = None,
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
sequence_output, contextualized_embeddings, attention_probs = self.get_contextualized_embeddings(input_ids=input_ids,
inputs_embeds=inputs_embeds,
attention_mask=attention_mask)
logits = self.head(sequence_output[:, 0, :])
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = nn.MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = nn.CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = nn.BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (
logits,
*([contextualized_embeddings] if output_hidden_states else []),
*([attention_probs] if output_attentions else [])
)
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=contextualized_embeddings if output_hidden_states else None,
attentions=attention_probs if output_attentions else None
)
@add_start_docstrings(
"""
LTG-BERT model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
Named-Entity-Recognition (NER) tasks.
""",
LTG_BERT_START_DOCSTRING,
)
class LtgBertForTokenClassification(LtgBertModel):
_keys_to_ignore_on_load_unexpected = ["classifier"]
_keys_to_ignore_on_load_missing = ["head"]
def __init__(self, config):
super().__init__(config, add_mlm_layer=False)
self.num_labels = config.num_labels
self.head = Classifier(config, self.num_labels)
@add_start_docstrings_to_model_forward(LTG_BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: Optional[torch.LongTensor] = None,
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
sequence_output, contextualized_embeddings, attention_probs = self.get_contextualized_embeddings(input_ids=input_ids,
attention_mask=attention_mask)
logits = self.head(sequence_output)
loss = None
if labels is not None:
loss_fct = nn.CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
if not return_dict:
output = (
logits,
*([contextualized_embeddings] if output_hidden_states else []),
*([attention_probs] if output_attentions else [])
)
return ((loss,) + output) if loss is not None else output
return TokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=contextualized_embeddings if output_hidden_states else None,
attentions=attention_probs if output_attentions else None
)
@add_start_docstrings(
"""
LTG-BERT model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
""",
LTG_BERT_START_DOCSTRING,
)
class LtgBertForQuestionAnswering(LtgBertModel):
_keys_to_ignore_on_load_unexpected = ["classifier"]
_keys_to_ignore_on_load_missing = ["head"]
def __init__(self, config):
super().__init__(config, add_mlm_layer=False)
self.num_labels = config.num_labels
self.head = Classifier(config, self.num_labels)
@add_start_docstrings_to_model_forward(LTG_BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
start_positions: Optional[torch.Tensor] = None,
end_positions: Optional[torch.Tensor] = None
) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]:
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
sequence_output, contextualized_embeddings, attention_probs = self.get_contextualized_embeddings(input_ids=input_ids,
attention_mask=attention_mask)
logits = self.head(sequence_output)
start_logits, end_logits = logits.split(1, dim=-1)
start_logits = start_logits.squeeze(-1).contiguous()
end_logits = end_logits.squeeze(-1).contiguous()
total_loss = None
if start_positions is not None and end_positions is not None:
# If we are on multi-GPU, split add a dimension
if len(start_positions.size()) > 1:
start_positions = start_positions.squeeze(-1)
if len(end_positions.size()) > 1:
end_positions = end_positions.squeeze(-1)
# sometimes the start/end positions are outside our model inputs, we ignore these terms
ignored_index = start_logits.size(1)
start_positions = start_positions.clamp(0, ignored_index)
end_positions = end_positions.clamp(0, ignored_index)
loss_fct = nn.CrossEntropyLoss(ignore_index=ignored_index)
start_loss = loss_fct(start_logits, start_positions)
end_loss = loss_fct(end_logits, end_positions)
total_loss = (start_loss + end_loss) / 2
if not return_dict:
output = (
start_logits,
end_logits,
*([contextualized_embeddings] if output_hidden_states else []),
*([attention_probs] if output_attentions else [])
)
return ((total_loss,) + output) if total_loss is not None else output
return QuestionAnsweringModelOutput(
loss=total_loss,
start_logits=start_logits,
end_logits=end_logits,
hidden_states=contextualized_embeddings if output_hidden_states else None,
attentions=attention_probs if output_attentions else None
)
@add_start_docstrings(
"""
LTG-BERT model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
softmax) e.g. for RocStories/SWAG tasks.
""",
LTG_BERT_START_DOCSTRING,
)
class LtgBertForMultipleChoice(LtgBertModel):
_keys_to_ignore_on_load_unexpected = ["classifier"]
_keys_to_ignore_on_load_missing = ["head"]
def __init__(self, config):
super().__init__(config, add_mlm_layer=False)
self.num_labels = getattr(config, "num_labels", 2)
self.head = Classifier(config, self.num_labels)
@add_start_docstrings_to_model_forward(LTG_BERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None
) -> Union[Tuple[torch.Tensor], MultipleChoiceModelOutput]:
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
num_choices = input_ids.shape[1]
flat_input_ids = input_ids.view(-1, input_ids.size(-1))
flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
sequence_output, contextualized_embeddings, attention_probs = self.get_contextualized_embeddings(input_ids=flat_input_ids,
attention_mask=flat_attention_mask)
logits = self.head(sequence_output)
reshaped_logits = logits.view(-1, num_choices)
loss = None
if labels is not None:
loss_fct = nn.CrossEntropyLoss()
loss = loss_fct(reshaped_logits, labels)
if not return_dict:
output = (
reshaped_logits,
*([contextualized_embeddings] if output_hidden_states else []),
*([attention_probs] if output_attentions else [])
)
return ((loss,) + output) if loss is not None else output
return MultipleChoiceModelOutput(
loss=loss,
logits=reshaped_logits,
hidden_states=contextualized_embeddings if output_hidden_states else None,
attentions=attention_probs if output_attentions else None
)
|