metadata
license: cc-by-nc-4.0
base_model: facebook/mms-1b-all
tags:
- generated_from_trainer
datasets:
- common_voice_15_0
metrics:
- wer
model-index:
- name: wav2vec2-large-mms-1b-azerbaijani-common_voice15.0
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: common_voice_15_0
type: common_voice_15_0
config: az
split: test
args: az
metrics:
- name: Wer
type: wer
value: 0.2631578947368421
wav2vec2-large-mms-1b-azerbaijani-common_voice15.0
This model is a fine-tuned version of facebook/mms-1b-all on the common_voice_15_0 dataset. It achieves the following results on the evaluation set:
- Loss: 0.3188
- Wer: 0.2632
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 15
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
7.6471 | 2.0 | 10 | 7.6790 | 1.0658 |
5.6745 | 4.0 | 20 | 4.2727 | 1.0088 |
3.5016 | 6.0 | 30 | 3.1003 | 1.0 |
2.6223 | 8.0 | 40 | 1.8137 | 1.0439 |
1.3939 | 10.0 | 50 | 0.6549 | 0.3947 |
0.3696 | 12.0 | 60 | 0.3665 | 0.2719 |
0.2475 | 14.0 | 70 | 0.3188 | 0.2632 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.1+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0