librarian-bot's picture
Librarian Bot: Add base_model information to model
a93d5b1
|
raw
history blame
2.02 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
base_model: microsoft/swin-tiny-patch4-window7-224
model-index:
  - name: swin-tiny-patch4-window7-224-finetuned-eurosat-kornia
    results:
      - task:
          type: image-classification
          name: Image Classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - type: accuracy
            value: 0.9829629629629629
            name: Accuracy

swin-tiny-patch4-window7-224-finetuned-eurosat-kornia

This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0540
  • Accuracy: 0.9830

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.0859 1.0 190 0.0969 0.9685
0.0664 2.0 380 0.0627 0.9815
0.0359 3.0 570 0.0540 0.9830

Framework versions

  • Transformers 4.21.2
  • Pytorch 1.12.1+cu113
  • Datasets 2.4.0
  • Tokenizers 0.12.1