File size: 12,428 Bytes
fd06d88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
import librosa
import numpy as np
import torch
import torch.nn as nn
import logging
import math
import random

CONSTANT = 1e-5

def normalize_batch(x, seq_len, normalize_type):
    x_mean = None
    x_std = None
    if normalize_type == "per_feature":
        x_mean = torch.zeros((seq_len.shape[0], x.shape[1]), dtype=x.dtype, device=x.device)
        x_std = torch.zeros((seq_len.shape[0], x.shape[1]), dtype=x.dtype, device=x.device)
        for i in range(x.shape[0]):
            if x[i, :, : seq_len[i]].shape[1] == 1:
                raise ValueError(
                    "normalize_batch with `per_feature` normalize_type received a tensor of length 1. This will result "
                    "in torch.std() returning nan. Make sure your audio length has enough samples for a single "
                    "feature (ex. at least `hop_length` for Mel Spectrograms)."
                )
            x_mean[i, :] = x[i, :, : seq_len[i]].mean(dim=1)
            x_std[i, :] = x[i, :, : seq_len[i]].std(dim=1)
        # make sure x_std is not zero
        x_std += CONSTANT
        return (x - x_mean.unsqueeze(2)) / x_std.unsqueeze(2), x_mean, x_std
    elif normalize_type == "all_features":
        x_mean = torch.zeros(seq_len.shape, dtype=x.dtype, device=x.device)
        x_std = torch.zeros(seq_len.shape, dtype=x.dtype, device=x.device)
        for i in range(x.shape[0]):
            x_mean[i] = x[i, :, : seq_len[i].item()].mean()
            x_std[i] = x[i, :, : seq_len[i].item()].std()
        # make sure x_std is not zero
        x_std += CONSTANT
        return (x - x_mean.view(-1, 1, 1)) / x_std.view(-1, 1, 1), x_mean, x_std
    elif "fixed_mean" in normalize_type and "fixed_std" in normalize_type:
        x_mean = torch.tensor(normalize_type["fixed_mean"], device=x.device)
        x_std = torch.tensor(normalize_type["fixed_std"], device=x.device)
        return (
            (x - x_mean.view(x.shape[0], x.shape[1]).unsqueeze(2)) / x_std.view(x.shape[0], x.shape[1]).unsqueeze(2),
            x_mean,
            x_std,
        )
    else:
        return x, x_mean, x_std

def splice_frames(x, frame_splicing):
    """ Stacks frames together across feature dim

    input is batch_size, feature_dim, num_frames
    output is batch_size, feature_dim*frame_splicing, num_frames

    """
    seq = [x]
    for n in range(1, frame_splicing):
        seq.append(torch.cat([x[:, :, :n], x[:, :, n:]], dim=2))
    return torch.cat(seq, dim=1)

class FilterbankFeatures(nn.Module):
    """Featurizer that converts wavs to Mel Spectrograms.
    See AudioToMelSpectrogramPreprocessor for args.
    
    "normalize": "per_feature",
    "window_size": 0.025,
    "sample_rate": 16000,
    "window_stride": 0.01,
    "window": "hann",
    "features": 80,
    "n_fft": 512,
    "frame_splicing": 1,
    "dither": 1e-05
    
    n_window_size=window_size * sample_rate,
    n_window_stride = window_stride * sample_rate,
    """

    def __init__(
        self,
        sample_rate=16000,
        n_window_size=400,
        n_window_stride=160,
        window="hann",
        normalize="per_feature",
        n_fft=512,
        preemph=0.97,
        nfilt=80,
        lowfreq=0,
        highfreq=None,
        log=True,
        log_zero_guard_type="add",
        log_zero_guard_value=2 ** -24,
        dither=CONSTANT,
        pad_to=16,
        max_duration=16.7,
        frame_splicing=1,
        exact_pad=False,
        pad_value=0,
        mag_power=2.0,
        use_grads=False,
        rng=None,
        nb_augmentation_prob=0.0,
        nb_max_freq=4000,
        stft_exact_pad=False,  # Deprecated arguments; kept for config compatibility
        stft_conv=False,  # Deprecated arguments; kept for config compatibility
    ):
        super().__init__()
        if stft_conv or stft_exact_pad:
            logging.warning(
                "Using torch_stft is deprecated and has been removed. The values have been forcibly set to False "
                "for FilterbankFeatures and AudioToMelSpectrogramPreprocessor. Please set exact_pad to True "
                "as needed."
            )
        if exact_pad and n_window_stride % 2 == 1:
            raise NotImplementedError(
                f"{self} received exact_pad == True, but hop_size was odd. If audio_length % hop_size == 0. Then the "
                "returned spectrogram would not be of length audio_length // hop_size. Please use an even hop_size."
            )
        self.log_zero_guard_value = log_zero_guard_value
        if (
            n_window_size is None
            or n_window_stride is None
            or not isinstance(n_window_size, int)
            or not isinstance(n_window_stride, int)
            or n_window_size <= 0
            or n_window_stride <= 0
        ):
            raise ValueError(
                f"{self} got an invalid value for either n_window_size or "
                f"n_window_stride. Both must be positive ints."
            )
        logging.info(f"PADDING: {pad_to}")

        self.win_length = n_window_size
        self.hop_length = n_window_stride
        self.n_fft = n_fft or 2 ** math.ceil(math.log2(self.win_length))
        self.stft_pad_amount = (self.n_fft - self.hop_length) // 2 if exact_pad else None

        if exact_pad:
            logging.info("STFT using exact pad")
        torch_windows = {
            'hann': torch.hann_window,
            'hamming': torch.hamming_window,
            'blackman': torch.blackman_window,
            'bartlett': torch.bartlett_window,
            'none': None,
        }
        window_fn = torch_windows.get(window, None)
        window_tensor = window_fn(self.win_length, periodic=False) if window_fn else None
        self.register_buffer("window", window_tensor)
        self.stft = lambda x: torch.stft(
            x,
            n_fft=self.n_fft,
            hop_length=self.hop_length,
            win_length=self.win_length,
            center=False if exact_pad else True,
            window=self.window.to(dtype=torch.float),
            return_complex=True,
        )

        self.normalize = normalize
        self.log = log
        self.dither = dither
        self.frame_splicing = frame_splicing
        self.nfilt = nfilt
        self.preemph = preemph
        self.pad_to = pad_to
        highfreq = highfreq or sample_rate / 2

        filterbanks = torch.tensor(
            librosa.filters.mel(sr=sample_rate, n_fft=self.n_fft, n_mels=nfilt, fmin=lowfreq, fmax=highfreq),
            dtype=torch.float,
        ).unsqueeze(0)
        self.register_buffer("fb", filterbanks)

        # Calculate maximum sequence length
        max_length = self.get_seq_len(torch.tensor(max_duration * sample_rate, dtype=torch.float))
        max_pad = pad_to - (max_length % pad_to) if pad_to > 0 else 0
        self.max_length = max_length + max_pad
        self.pad_value = pad_value
        self.mag_power = mag_power

        # We want to avoid taking the log of zero
        # There are two options: either adding or clamping to a small value
        if log_zero_guard_type not in ["add", "clamp"]:
            raise ValueError(
                f"{self} received {log_zero_guard_type} for the "
                f"log_zero_guard_type parameter. It must be either 'add' or "
                f"'clamp'."
            )

        self.use_grads = use_grads
        if not use_grads:
            self.forward = torch.no_grad()(self.forward)
        self._rng = random.Random() if rng is None else rng
        self.nb_augmentation_prob = nb_augmentation_prob
        if self.nb_augmentation_prob > 0.0:
            if nb_max_freq >= sample_rate / 2:
                self.nb_augmentation_prob = 0.0
            else:
                self._nb_max_fft_bin = int((nb_max_freq / sample_rate) * n_fft)

        # log_zero_guard_value is the the small we want to use, we support
        # an actual number, or "tiny", or "eps"
        self.log_zero_guard_type = log_zero_guard_type
        logging.debug(f"sr: {sample_rate}")
        logging.debug(f"n_fft: {self.n_fft}")
        logging.debug(f"win_length: {self.win_length}")
        logging.debug(f"hop_length: {self.hop_length}")
        logging.debug(f"n_mels: {nfilt}")
        logging.debug(f"fmin: {lowfreq}")
        logging.debug(f"fmax: {highfreq}")
        logging.debug(f"using grads: {use_grads}")
        logging.debug(f"nb_augmentation_prob: {nb_augmentation_prob}")

    def log_zero_guard_value_fn(self, x):
        if isinstance(self.log_zero_guard_value, str):
            if self.log_zero_guard_value == "tiny":
                return torch.finfo(x.dtype).tiny
            elif self.log_zero_guard_value == "eps":
                return torch.finfo(x.dtype).eps
            else:
                raise ValueError(
                    f"{self} received {self.log_zero_guard_value} for the "
                    f"log_zero_guard_type parameter. It must be either a "
                    f"number, 'tiny', or 'eps'"
                )
        else:
            return self.log_zero_guard_value

    def get_seq_len(self, seq_len):
        # Assuming that center is True is stft_pad_amount = 0
        pad_amount = self.stft_pad_amount * 2 if self.stft_pad_amount is not None else self.n_fft // 2 * 2
        seq_len = torch.floor((seq_len + pad_amount - self.n_fft) / self.hop_length) + 1
        return seq_len.to(dtype=torch.long)

    @property
    def filter_banks(self):
        return self.fb

    def forward(self, x, seq_len, linear_spec=False):
        seq_len = self.get_seq_len(seq_len.float())

        if self.stft_pad_amount is not None:
            x = torch.nn.functional.pad(
                x.unsqueeze(1), (self.stft_pad_amount, self.stft_pad_amount), "reflect"
            ).squeeze(1)

        # dither (only in training mode for eval determinism)
        if self.training and self.dither > 0:
            x += self.dither * torch.randn_like(x)

        # do preemphasis
        if self.preemph is not None:
            x = torch.cat((x[:, 0].unsqueeze(1), x[:, 1:] - self.preemph * x[:, :-1]), dim=1)

        # disable autocast to get full range of stft values
        with torch.cuda.amp.autocast(enabled=False):
            x = self.stft(x)

        # torch stft returns complex tensor (of shape [B,N,T]); so convert to magnitude
        # guard is needed for sqrt if grads are passed through
        guard = 0 if not self.use_grads else CONSTANT
        x = torch.view_as_real(x)
        x = torch.sqrt(x.pow(2).sum(-1) + guard)

        if self.training and self.nb_augmentation_prob > 0.0:
            for idx in range(x.shape[0]):
                if self._rng.random() < self.nb_augmentation_prob:
                    x[idx, self._nb_max_fft_bin :, :] = 0.0

        # get power spectrum
        if self.mag_power != 1.0:
            x = x.pow(self.mag_power)

        # return plain spectrogram if required
        if linear_spec:
            return x, seq_len

        # dot with filterbank energies
        x = torch.matmul(self.fb.to(x.dtype), x)
        # log features if required
        if self.log:
            if self.log_zero_guard_type == "add":
                x = torch.log(x + self.log_zero_guard_value_fn(x))
            elif self.log_zero_guard_type == "clamp":
                x = torch.log(torch.clamp(x, min=self.log_zero_guard_value_fn(x)))
            else:
                raise ValueError("log_zero_guard_type was not understood")

        # frame splicing if required
        if self.frame_splicing > 1:
            x = splice_frames(x, self.frame_splicing)

        # normalize if required
        if self.normalize:
            x, _, _ = normalize_batch(x, seq_len, normalize_type=self.normalize)

        # mask to zero any values beyond seq_len in batch, pad to multiple of `pad_to` (for efficiency)
        max_len = x.size(-1)
        mask = torch.arange(max_len).to(x.device)
        mask = mask.repeat(x.size(0), 1) >= seq_len.unsqueeze(1)
        x = x.masked_fill(mask.unsqueeze(1).type(torch.bool).to(device=x.device), self.pad_value)
        del mask
        pad_to = self.pad_to
        if pad_to == "max":
            x = nn.functional.pad(x, (0, self.max_length - x.size(-1)), value=self.pad_value)
        elif pad_to > 0:
            pad_amt = x.size(-1) % pad_to
            if pad_amt != 0:
                x = nn.functional.pad(x, (0, pad_to - pad_amt), value=self.pad_value)
        return x, seq_len