File size: 10,865 Bytes
2d9cbae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
# !pip install sentencepiece==0.1.96 transformers==4.10.0
import sentencepiece as spm
import os
from transformers import PreTrainedTokenizer
from collections import Counter
from typing import List, Optional


class RobertaTokenizer(PreTrainedTokenizer):
    def __init__(
            self,
            pretrained_file,
            bos_token="<s>",
            eos_token="</s>",
            sep_token="</s>",
            cls_token="<s>",
            unk_token="<unk>",
            pad_token="<pad>",
            mask_token="<mask>",
            **kwargs
    ):
        super().__init__(
            bos_token=bos_token,
            eos_token=eos_token,
            unk_token=unk_token,
            sep_token=sep_token,
            cls_token=cls_token,
            pad_token=pad_token,
            mask_token=mask_token,
            **kwargs,
        )

        # load bpe model and vocab file
        sentencepiece_model = os.path.join(pretrained_file, 'sentencepiece.bpe.model')
        vocab_file = os.path.join(pretrained_file, 'dict.txt')
        self.sp_model = spm.SentencePieceProcessor()
        self.sp_model.Load(
            sentencepiece_model)  # please dont use anything from sp_model bcz it makes everything goes wrong

        self.bpe_dict = Dictionary().load(vocab_file)

        # Mimic fairseq token-to-id alignment for the first 4 token
        self.fairseq_tokens_to_ids = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3}

        # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab
        self.fairseq_offset = 0

        self.fairseq_tokens_to_ids["<mask>"] = len(self.bpe_dict) + self.fairseq_offset
        self.fairseq_ids_to_tokens = {v: k for k, v in self.fairseq_tokens_to_ids.items()}

    def _tokenize(self, text):
        return self.sp_model.EncodeAsPieces(text)

    def _convert_token_to_id(self, token):
        """ Converts a token (str) in an id using the vocab. """
        if token in self.fairseq_tokens_to_ids:
            return self.fairseq_tokens_to_ids[token]
        spm_id = self.bpe_dict.index(token)
        return spm_id

    def _convert_id_to_token(self, index):
        """Converts an index (integer) in a token (str) using the vocab."""
        if index in self.fairseq_ids_to_tokens:
            return self.fairseq_ids_to_tokens[index]
        return self.bpe_dict[index]

    def build_inputs_with_special_tokens(
            self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
    ) -> List[int]:
        """
        Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
        adding special tokens.

        This implementation does not add special tokens and this method should be overridden in a subclass.

        Args:
            token_ids_0 (:obj:`List[int]`): The first tokenized sequence.
            token_ids_1 (:obj:`List[int]`, `optional`): The second tokenized sequence.

        Returns:
            :obj:`List[int]`: The model input with special tokens.
        """
        return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]

    def create_token_type_ids_from_sequences(
            self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
    ) -> List[int]:
        """
        Create a mask from the two sequences passed to be used in a sequence-pair classification task. XLM-RoBERTa does
        not make use of token type ids, therefore a list of zeros is returned.

        Args:
            token_ids_0 (:obj:`List[int]`):
                List of IDs.
            token_ids_1 (:obj:`List[int]`, `optional`):
                Optional second list of IDs for sequence pairs.

        Returns:
            :obj:`List[int]`: List of zeros.

        """

        sep = [self.sep_token_id]
        cls = [self.cls_token_id]

        return len(cls + token_ids_0 + sep) * [0]

    @property
    def vocab_size(self):
        return len(self.bpe_dict) + self.fairseq_offset + 1  # Add the <mask> token

    def get_vocab(self):
        vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
        vocab.update(self.added_tokens_encoder)
        return vocab


class Dictionary(object):
    """A mapping from symbols to consecutive integers"""

    def __init__(
            self,
            pad='<pad>',
            eos='</s>',
            unk='<unk>',
            bos='<s>',
            extra_special_symbols=None,
    ):
        self.unk_word, self.pad_word, self.eos_word = unk, pad, eos
        self.symbols = []
        self.count = []
        self.indices = {}
        self.bos_index = self.add_symbol(bos)
        self.pad_index = self.add_symbol(pad)
        self.eos_index = self.add_symbol(eos)
        self.unk_index = self.add_symbol(unk)
        if extra_special_symbols:
            for s in extra_special_symbols:
                self.add_symbol(s)
        self.nspecial = len(self.symbols)

    def __eq__(self, other):
        return self.indices == other.indices

    def __getitem__(self, idx):
        if idx < len(self.symbols):
            return self.symbols[idx]
        return self.unk_word

    def __len__(self):
        """Returns the number of symbols in the dictionary"""
        return len(self.symbols)

    def __contains__(self, sym):
        return sym in self.indices

    def index(self, sym):
        """Returns the index of the specified symbol"""
        assert isinstance(sym, str)
        if sym in self.indices:
            return self.indices[sym]
        return self.unk_index

    def unk_string(self, escape=False):
        """Return unknown string, optionally escaped as: <<unk>>"""
        if escape:
            return '<{}>'.format(self.unk_word)
        else:
            return self.unk_word

    def add_symbol(self, word, n=1):
        """Adds a word to the dictionary"""
        if word in self.indices:
            idx = self.indices[word]
            self.count[idx] = self.count[idx] + n
            return idx
        else:
            idx = len(self.symbols)
            self.indices[word] = idx
            self.symbols.append(word)
            self.count.append(n)
            return idx

    def update(self, new_dict):
        """Updates counts from new dictionary."""
        for word in new_dict.symbols:
            idx2 = new_dict.indices[word]
            if word in self.indices:
                idx = self.indices[word]
                self.count[idx] = self.count[idx] + new_dict.count[idx2]
            else:
                idx = len(self.symbols)
                self.indices[word] = idx
                self.symbols.append(word)
                self.count.append(new_dict.count[idx2])

    def finalize(self, threshold=-1, nwords=-1, padding_factor=8):
        """Sort symbols by frequency in descending order, ignoring special ones.

        Args:
            - threshold defines the minimum word count
            - nwords defines the total number of words in the final dictionary,
                including special symbols
            - padding_factor can be used to pad the dictionary size to be a
                multiple of 8, which is important on some hardware (e.g., Nvidia
                Tensor Cores).
        """
        if nwords <= 0:
            nwords = len(self)

        new_indices = dict(zip(self.symbols[:self.nspecial], range(self.nspecial)))
        new_symbols = self.symbols[:self.nspecial]
        new_count = self.count[:self.nspecial]

        c = Counter(dict(sorted(zip(self.symbols[self.nspecial:], self.count[self.nspecial:]))))
        for symbol, count in c.most_common(nwords - self.nspecial):
            if count >= threshold:
                new_indices[symbol] = len(new_symbols)
                new_symbols.append(symbol)
                new_count.append(count)
            else:
                break

        threshold_nwords = len(new_symbols)
        if padding_factor > 1:
            i = 0
            while threshold_nwords % padding_factor != 0:
                symbol = 'madeupword{:04d}'.format(i)
                new_indices[symbol] = len(new_symbols)
                new_symbols.append(symbol)
                new_count.append(0)
                i += 1
                threshold_nwords += 1

        assert len(new_symbols) % padding_factor == 0
        assert len(new_symbols) == len(new_indices)

        self.count = list(new_count)
        self.symbols = list(new_symbols)
        self.indices = new_indices

    def bos(self):
        """Helper to get index of beginning-of-sentence symbol"""
        return self.bos_index

    def pad(self):
        """Helper to get index of pad symbol"""
        return self.pad_index

    def eos(self):
        """Helper to get index of end-of-sentence symbol"""
        return self.eos_index

    def unk(self):
        """Helper to get index of unk symbol"""
        return self.unk_index

    @classmethod
    def load(cls, f):
        """Loads the dictionary from a text file with the format:

        ```
        <symbol0> <count0>
        <symbol1> <count1>
        ...
        ```
        """
        d = cls()
        d.add_from_file(f)
        return d

    def add_from_file(self, f):
        """
        Loads a pre-existing dictionary from a text file and adds its symbols
        to this instance.
        """
        if isinstance(f, str):
            try:
                with open(f, 'r', encoding='utf-8') as fd:
                    self.add_from_file(fd)
            except FileNotFoundError as fnfe:
                raise fnfe
            except UnicodeError:
                raise Exception("Incorrect encoding detected in {}, please "
                                "rebuild the dataset".format(f))
            return

        lines = f.readlines()
        indices_start_line = self._load_meta(lines)
        for line in lines[indices_start_line:]:
            idx = line.rfind(' ')
            if idx == -1:
                raise ValueError("Incorrect dictionary format, expected '<token> <cnt>'")
            word = line[:idx]
            count = int(line[idx + 1:])
            self.indices[word] = len(self.symbols)
            self.symbols.append(word)
            self.count.append(count)

    def _save(self, f, kv_iterator):
        if isinstance(f, str):
            os.makedirs(os.path.dirname(f), exist_ok=True)
            with open(f, 'w', encoding='utf-8') as fd:
                return self.save(fd)
        for k, v in kv_iterator:
            print('{} {}'.format(k, v), file=f)

    def _get_meta(self):
        return [], []

    def _load_meta(self, lines):
        return 0

    def save(self, f):
        """Stores dictionary into a text file"""
        ex_keys, ex_vals = self._get_meta()
        self._save(f, zip(ex_keys + self.symbols[self.nspecial:], ex_vals + self.count[self.nspecial:]))